MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elndif Structured version   Visualization version   GIF version

Theorem elndif 4129
Description: A set does not belong to a class excluding it. (Contributed by NM, 27-Jun-1994.)
Assertion
Ref Expression
elndif (𝐴𝐵 → ¬ 𝐴 ∈ (𝐶𝐵))

Proof of Theorem elndif
StepHypRef Expression
1 eldifn 4128 . 2 (𝐴 ∈ (𝐶𝐵) → ¬ 𝐴𝐵)
21con2i 139 1 (𝐴𝐵 → ¬ 𝐴 ∈ (𝐶𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wcel 2098  cdif 3946
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2699
This theorem depends on definitions:  df-bi 206  df-an 395  df-tru 1536  df-ex 1774  df-sb 2060  df-clab 2706  df-cleq 2720  df-clel 2806  df-v 3475  df-dif 3952
This theorem is referenced by:  peano5  7905  peano5OLD  7906  extmptsuppeq  8199  undifixp  8959  ssfin4  10341  isf32lem3  10386  isf34lem4  10408  xrinfmss  13329  restntr  23106  cmpcld  23326  reconnlem2  24763  lebnumlem1  24907  i1fd  25630  hgt750lemd  34313  fmlasucdisj  35042  dfon2lem6  35417  onsucconni  35954  meaiininclem  45903  caragendifcl  45931
  Copyright terms: Public domain W3C validator
OSZAR »