![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elndif | Structured version Visualization version GIF version |
Description: A set does not belong to a class excluding it. (Contributed by NM, 27-Jun-1994.) |
Ref | Expression |
---|---|
elndif | ⊢ (𝐴 ∈ 𝐵 → ¬ 𝐴 ∈ (𝐶 ∖ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldifn 4128 | . 2 ⊢ (𝐴 ∈ (𝐶 ∖ 𝐵) → ¬ 𝐴 ∈ 𝐵) | |
2 | 1 | con2i 139 | 1 ⊢ (𝐴 ∈ 𝐵 → ¬ 𝐴 ∈ (𝐶 ∖ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2098 ∖ cdif 3946 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2699 |
This theorem depends on definitions: df-bi 206 df-an 395 df-tru 1536 df-ex 1774 df-sb 2060 df-clab 2706 df-cleq 2720 df-clel 2806 df-v 3475 df-dif 3952 |
This theorem is referenced by: peano5 7905 peano5OLD 7906 extmptsuppeq 8199 undifixp 8959 ssfin4 10341 isf32lem3 10386 isf34lem4 10408 xrinfmss 13329 restntr 23106 cmpcld 23326 reconnlem2 24763 lebnumlem1 24907 i1fd 25630 hgt750lemd 34313 fmlasucdisj 35042 dfon2lem6 35417 onsucconni 35954 meaiininclem 45903 caragendifcl 45931 |
Copyright terms: Public domain | W3C validator |