MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssfin4 Structured version   Visualization version   GIF version

Theorem ssfin4 10333
Description: Dedekind finite sets have Dedekind finite subsets. (Contributed by Stefan O'Rear, 30-Oct-2014.) (Revised by Mario Carneiro, 6-May-2015.) (Revised by Mario Carneiro, 16-May-2015.)
Assertion
Ref Expression
ssfin4 ((𝐴 ∈ FinIV𝐵𝐴) → 𝐵 ∈ FinIV)

Proof of Theorem ssfin4
Dummy variables 𝑐 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpll 766 . . . 4 (((𝐴 ∈ FinIV𝐵𝐴) ∧ (𝑥𝐵𝑥𝐵)) → 𝐴 ∈ FinIV)
2 pssss 4093 . . . . . . . . 9 (𝑥𝐵𝑥𝐵)
3 simpr 484 . . . . . . . . 9 ((𝐴 ∈ FinIV𝐵𝐴) → 𝐵𝐴)
42, 3sylan9ssr 3994 . . . . . . . 8 (((𝐴 ∈ FinIV𝐵𝐴) ∧ 𝑥𝐵) → 𝑥𝐴)
5 difssd 4131 . . . . . . . 8 (((𝐴 ∈ FinIV𝐵𝐴) ∧ 𝑥𝐵) → (𝐴𝐵) ⊆ 𝐴)
64, 5unssd 4186 . . . . . . 7 (((𝐴 ∈ FinIV𝐵𝐴) ∧ 𝑥𝐵) → (𝑥 ∪ (𝐴𝐵)) ⊆ 𝐴)
7 pssnel 4471 . . . . . . . . 9 (𝑥𝐵 → ∃𝑐(𝑐𝐵 ∧ ¬ 𝑐𝑥))
87adantl 481 . . . . . . . 8 (((𝐴 ∈ FinIV𝐵𝐴) ∧ 𝑥𝐵) → ∃𝑐(𝑐𝐵 ∧ ¬ 𝑐𝑥))
9 simpllr 775 . . . . . . . . . . 11 ((((𝐴 ∈ FinIV𝐵𝐴) ∧ 𝑥𝐵) ∧ (𝑐𝐵 ∧ ¬ 𝑐𝑥)) → 𝐵𝐴)
10 simprl 770 . . . . . . . . . . 11 ((((𝐴 ∈ FinIV𝐵𝐴) ∧ 𝑥𝐵) ∧ (𝑐𝐵 ∧ ¬ 𝑐𝑥)) → 𝑐𝐵)
119, 10sseldd 3981 . . . . . . . . . 10 ((((𝐴 ∈ FinIV𝐵𝐴) ∧ 𝑥𝐵) ∧ (𝑐𝐵 ∧ ¬ 𝑐𝑥)) → 𝑐𝐴)
12 simprr 772 . . . . . . . . . . 11 ((((𝐴 ∈ FinIV𝐵𝐴) ∧ 𝑥𝐵) ∧ (𝑐𝐵 ∧ ¬ 𝑐𝑥)) → ¬ 𝑐𝑥)
13 elndif 4127 . . . . . . . . . . . 12 (𝑐𝐵 → ¬ 𝑐 ∈ (𝐴𝐵))
1413ad2antrl 727 . . . . . . . . . . 11 ((((𝐴 ∈ FinIV𝐵𝐴) ∧ 𝑥𝐵) ∧ (𝑐𝐵 ∧ ¬ 𝑐𝑥)) → ¬ 𝑐 ∈ (𝐴𝐵))
15 ioran 982 . . . . . . . . . . . 12 (¬ (𝑐𝑥𝑐 ∈ (𝐴𝐵)) ↔ (¬ 𝑐𝑥 ∧ ¬ 𝑐 ∈ (𝐴𝐵)))
16 elun 4147 . . . . . . . . . . . 12 (𝑐 ∈ (𝑥 ∪ (𝐴𝐵)) ↔ (𝑐𝑥𝑐 ∈ (𝐴𝐵)))
1715, 16xchnxbir 333 . . . . . . . . . . 11 𝑐 ∈ (𝑥 ∪ (𝐴𝐵)) ↔ (¬ 𝑐𝑥 ∧ ¬ 𝑐 ∈ (𝐴𝐵)))
1812, 14, 17sylanbrc 582 . . . . . . . . . 10 ((((𝐴 ∈ FinIV𝐵𝐴) ∧ 𝑥𝐵) ∧ (𝑐𝐵 ∧ ¬ 𝑐𝑥)) → ¬ 𝑐 ∈ (𝑥 ∪ (𝐴𝐵)))
19 nelneq2 2854 . . . . . . . . . 10 ((𝑐𝐴 ∧ ¬ 𝑐 ∈ (𝑥 ∪ (𝐴𝐵))) → ¬ 𝐴 = (𝑥 ∪ (𝐴𝐵)))
2011, 18, 19syl2anc 583 . . . . . . . . 9 ((((𝐴 ∈ FinIV𝐵𝐴) ∧ 𝑥𝐵) ∧ (𝑐𝐵 ∧ ¬ 𝑐𝑥)) → ¬ 𝐴 = (𝑥 ∪ (𝐴𝐵)))
21 eqcom 2735 . . . . . . . . 9 (𝐴 = (𝑥 ∪ (𝐴𝐵)) ↔ (𝑥 ∪ (𝐴𝐵)) = 𝐴)
2220, 21sylnib 328 . . . . . . . 8 ((((𝐴 ∈ FinIV𝐵𝐴) ∧ 𝑥𝐵) ∧ (𝑐𝐵 ∧ ¬ 𝑐𝑥)) → ¬ (𝑥 ∪ (𝐴𝐵)) = 𝐴)
238, 22exlimddv 1931 . . . . . . 7 (((𝐴 ∈ FinIV𝐵𝐴) ∧ 𝑥𝐵) → ¬ (𝑥 ∪ (𝐴𝐵)) = 𝐴)
24 dfpss2 4083 . . . . . . 7 ((𝑥 ∪ (𝐴𝐵)) ⊊ 𝐴 ↔ ((𝑥 ∪ (𝐴𝐵)) ⊆ 𝐴 ∧ ¬ (𝑥 ∪ (𝐴𝐵)) = 𝐴))
256, 23, 24sylanbrc 582 . . . . . 6 (((𝐴 ∈ FinIV𝐵𝐴) ∧ 𝑥𝐵) → (𝑥 ∪ (𝐴𝐵)) ⊊ 𝐴)
2625adantrr 716 . . . . 5 (((𝐴 ∈ FinIV𝐵𝐴) ∧ (𝑥𝐵𝑥𝐵)) → (𝑥 ∪ (𝐴𝐵)) ⊊ 𝐴)
27 simprr 772 . . . . . . 7 (((𝐴 ∈ FinIV𝐵𝐴) ∧ (𝑥𝐵𝑥𝐵)) → 𝑥𝐵)
28 difexg 5329 . . . . . . . 8 (𝐴 ∈ FinIV → (𝐴𝐵) ∈ V)
29 enrefg 9004 . . . . . . . 8 ((𝐴𝐵) ∈ V → (𝐴𝐵) ≈ (𝐴𝐵))
301, 28, 293syl 18 . . . . . . 7 (((𝐴 ∈ FinIV𝐵𝐴) ∧ (𝑥𝐵𝑥𝐵)) → (𝐴𝐵) ≈ (𝐴𝐵))
312ad2antrl 727 . . . . . . . . . 10 (((𝐴 ∈ FinIV𝐵𝐴) ∧ (𝑥𝐵𝑥𝐵)) → 𝑥𝐵)
32 ssinss1 4238 . . . . . . . . . 10 (𝑥𝐵 → (𝑥𝐴) ⊆ 𝐵)
3331, 32syl 17 . . . . . . . . 9 (((𝐴 ∈ FinIV𝐵𝐴) ∧ (𝑥𝐵𝑥𝐵)) → (𝑥𝐴) ⊆ 𝐵)
34 inssdif0 4370 . . . . . . . . 9 ((𝑥𝐴) ⊆ 𝐵 ↔ (𝑥 ∩ (𝐴𝐵)) = ∅)
3533, 34sylib 217 . . . . . . . 8 (((𝐴 ∈ FinIV𝐵𝐴) ∧ (𝑥𝐵𝑥𝐵)) → (𝑥 ∩ (𝐴𝐵)) = ∅)
36 disjdif 4472 . . . . . . . 8 (𝐵 ∩ (𝐴𝐵)) = ∅
3735, 36jctir 520 . . . . . . 7 (((𝐴 ∈ FinIV𝐵𝐴) ∧ (𝑥𝐵𝑥𝐵)) → ((𝑥 ∩ (𝐴𝐵)) = ∅ ∧ (𝐵 ∩ (𝐴𝐵)) = ∅))
38 unen 9070 . . . . . . 7 (((𝑥𝐵 ∧ (𝐴𝐵) ≈ (𝐴𝐵)) ∧ ((𝑥 ∩ (𝐴𝐵)) = ∅ ∧ (𝐵 ∩ (𝐴𝐵)) = ∅)) → (𝑥 ∪ (𝐴𝐵)) ≈ (𝐵 ∪ (𝐴𝐵)))
3927, 30, 37, 38syl21anc 837 . . . . . 6 (((𝐴 ∈ FinIV𝐵𝐴) ∧ (𝑥𝐵𝑥𝐵)) → (𝑥 ∪ (𝐴𝐵)) ≈ (𝐵 ∪ (𝐴𝐵)))
40 simplr 768 . . . . . . 7 (((𝐴 ∈ FinIV𝐵𝐴) ∧ (𝑥𝐵𝑥𝐵)) → 𝐵𝐴)
41 undif 4482 . . . . . . 7 (𝐵𝐴 ↔ (𝐵 ∪ (𝐴𝐵)) = 𝐴)
4240, 41sylib 217 . . . . . 6 (((𝐴 ∈ FinIV𝐵𝐴) ∧ (𝑥𝐵𝑥𝐵)) → (𝐵 ∪ (𝐴𝐵)) = 𝐴)
4339, 42breqtrd 5174 . . . . 5 (((𝐴 ∈ FinIV𝐵𝐴) ∧ (𝑥𝐵𝑥𝐵)) → (𝑥 ∪ (𝐴𝐵)) ≈ 𝐴)
44 fin4i 10321 . . . . 5 (((𝑥 ∪ (𝐴𝐵)) ⊊ 𝐴 ∧ (𝑥 ∪ (𝐴𝐵)) ≈ 𝐴) → ¬ 𝐴 ∈ FinIV)
4526, 43, 44syl2anc 583 . . . 4 (((𝐴 ∈ FinIV𝐵𝐴) ∧ (𝑥𝐵𝑥𝐵)) → ¬ 𝐴 ∈ FinIV)
461, 45pm2.65da 816 . . 3 ((𝐴 ∈ FinIV𝐵𝐴) → ¬ (𝑥𝐵𝑥𝐵))
4746nexdv 1932 . 2 ((𝐴 ∈ FinIV𝐵𝐴) → ¬ ∃𝑥(𝑥𝐵𝑥𝐵))
48 ssexg 5323 . . . 4 ((𝐵𝐴𝐴 ∈ FinIV) → 𝐵 ∈ V)
4948ancoms 458 . . 3 ((𝐴 ∈ FinIV𝐵𝐴) → 𝐵 ∈ V)
50 isfin4 10320 . . 3 (𝐵 ∈ V → (𝐵 ∈ FinIV ↔ ¬ ∃𝑥(𝑥𝐵𝑥𝐵)))
5149, 50syl 17 . 2 ((𝐴 ∈ FinIV𝐵𝐴) → (𝐵 ∈ FinIV ↔ ¬ ∃𝑥(𝑥𝐵𝑥𝐵)))
5247, 51mpbird 257 1 ((𝐴 ∈ FinIV𝐵𝐴) → 𝐵 ∈ FinIV)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 846   = wceq 1534  wex 1774  wcel 2099  Vcvv 3471  cdif 3944  cun 3945  cin 3946  wss 3947  wpss 3948  c0 4323   class class class wbr 5148  cen 8960  FinIVcfin4 10303
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-12 2167  ax-ext 2699  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-ne 2938  df-ral 3059  df-rex 3068  df-rab 3430  df-v 3473  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-br 5149  df-opab 5211  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-en 8964  df-fin4 10310
This theorem is referenced by:  domfin4  10334
  Copyright terms: Public domain W3C validator
OSZAR »