![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sylan9ssr | Structured version Visualization version GIF version |
Description: A subclass transitivity deduction. (Contributed by NM, 27-Sep-2004.) |
Ref | Expression |
---|---|
sylan9ssr.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
sylan9ssr.2 | ⊢ (𝜓 → 𝐵 ⊆ 𝐶) |
Ref | Expression |
---|---|
sylan9ssr | ⊢ ((𝜓 ∧ 𝜑) → 𝐴 ⊆ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylan9ssr.1 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
2 | sylan9ssr.2 | . . 3 ⊢ (𝜓 → 𝐵 ⊆ 𝐶) | |
3 | 1, 2 | sylan9ss 3992 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝐴 ⊆ 𝐶) |
4 | 3 | ancoms 458 | 1 ⊢ ((𝜓 ∧ 𝜑) → 𝐴 ⊆ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ⊆ wss 3945 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2699 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1537 df-ex 1775 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-v 3472 df-in 3952 df-ss 3962 |
This theorem is referenced by: intssuni2 4972 marypha1 9452 cardinfima 10115 cfflb 10277 ssfin4 10328 acsfn 17633 mrelatlub 18548 efgval 19666 islbs3 21037 kgentopon 23436 txlly 23534 sigaclci 33746 bnj1014 34587 topjoin 35844 filnetlem3 35859 poimirlem16 37104 mblfinlem3 37127 sspwimpALT 44355 sspwimpALT2 44358 setrecsres 48124 |
Copyright terms: Public domain | W3C validator |