MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elsn2g Structured version   Visualization version   GIF version

Theorem elsn2g 4667
Description: There is exactly one element in a singleton. Exercise 2 of [TakeutiZaring] p. 15. This variation requires only that 𝐵, rather than 𝐴, be a set. (Contributed by NM, 28-Oct-2003.)
Assertion
Ref Expression
elsn2g (𝐵𝑉 → (𝐴 ∈ {𝐵} ↔ 𝐴 = 𝐵))

Proof of Theorem elsn2g
StepHypRef Expression
1 elsni 4646 . 2 (𝐴 ∈ {𝐵} → 𝐴 = 𝐵)
2 snidg 4663 . . 3 (𝐵𝑉𝐵 ∈ {𝐵})
3 eleq1 2817 . . 3 (𝐴 = 𝐵 → (𝐴 ∈ {𝐵} ↔ 𝐵 ∈ {𝐵}))
42, 3syl5ibrcom 246 . 2 (𝐵𝑉 → (𝐴 = 𝐵𝐴 ∈ {𝐵}))
51, 4impbid2 225 1 (𝐵𝑉 → (𝐴 ∈ {𝐵} ↔ 𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1534  wcel 2099  {csn 4629
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2699
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1537  df-ex 1775  df-sb 2061  df-clab 2706  df-cleq 2720  df-clel 2806  df-sn 4630
This theorem is referenced by:  elsn2  4668  mptiniseg  6243  elsuc2g  6438  extmptsuppeq  8193  fzosplitsni  13776  1nsgtrivd  19129  limcco  25835  ply1termlem  26150  mptprop  32491  bj-elsn12g  36539  elpmapat  39237  stirlinglem8  45469  dirkercncflem2  45492
  Copyright terms: Public domain W3C validator
OSZAR »