![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elsuc | Structured version Visualization version GIF version |
Description: Membership in a successor. Exercise 5 of [TakeutiZaring] p. 17. (Contributed by NM, 15-Sep-2003.) |
Ref | Expression |
---|---|
elsuc.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
elsuc | ⊢ (𝐴 ∈ suc 𝐵 ↔ (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elsuc.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | elsucg 6431 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ suc 𝐵 ↔ (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵))) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∈ suc 𝐵 ↔ (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∨ wo 846 = wceq 1534 ∈ wcel 2099 Vcvv 3470 suc csuc 6365 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2699 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-tru 1537 df-ex 1775 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-v 3472 df-un 3950 df-sn 4625 df-suc 6369 |
This theorem is referenced by: sucel 6437 limsssuc 7848 omsmolem 8671 cantnfle 9688 infxpenlem 10030 inatsk 10795 nolesgn2ores 27598 nogesgn1ores 27600 untsucf 35298 dfon2lem7 35379 rdgssun 36851 |
Copyright terms: Public domain | W3C validator |