![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elxp2 | Structured version Visualization version GIF version |
Description: Membership in a Cartesian product. (Contributed by NM, 23-Feb-2004.) (Proof shortened by JJ, 13-Aug-2021.) |
Ref | Expression |
---|---|
elxp2 | ⊢ (𝐴 ∈ (𝐵 × 𝐶) ↔ ∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐶 𝐴 = 〈𝑥, 𝑦〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ancom 459 | . . 3 ⊢ ((𝐴 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶) ∧ 𝐴 = 〈𝑥, 𝑦〉)) | |
2 | 1 | 2exbii 1844 | . 2 ⊢ (∃𝑥∃𝑦(𝐴 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)) ↔ ∃𝑥∃𝑦((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶) ∧ 𝐴 = 〈𝑥, 𝑦〉)) |
3 | elxp 5705 | . 2 ⊢ (𝐴 ∈ (𝐵 × 𝐶) ↔ ∃𝑥∃𝑦(𝐴 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))) | |
4 | r2ex 3186 | . 2 ⊢ (∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐶 𝐴 = 〈𝑥, 𝑦〉 ↔ ∃𝑥∃𝑦((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶) ∧ 𝐴 = 〈𝑥, 𝑦〉)) | |
5 | 2, 3, 4 | 3bitr4i 302 | 1 ⊢ (𝐴 ∈ (𝐵 × 𝐶) ↔ ∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐶 𝐴 = 〈𝑥, 𝑦〉) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 394 = wceq 1534 ∃wex 1774 ∈ wcel 2099 ∃wrex 3060 〈cop 4639 × cxp 5680 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2697 ax-sep 5304 ax-nul 5311 ax-pr 5433 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2704 df-cleq 2718 df-clel 2803 df-ral 3052 df-rex 3061 df-v 3464 df-dif 3950 df-un 3952 df-ss 3964 df-nul 4326 df-if 4534 df-sn 4634 df-pr 4636 df-op 4640 df-opab 5216 df-xp 5688 |
This theorem is referenced by: opelxp 5718 xpiundi 5752 xpiundir 5753 ssrel2 5791 reuop 6304 el2xptp 8049 f1o2ndf1 8136 frpoins3xpg 8154 poxp2 8157 xpord2pred 8159 sexp2 8160 xpdom2 9105 tskxpss 10815 nqereu 10972 elreal 11174 xpsmnd0 18768 efgmnvl 19712 frgpuptinv 19769 frgpup3lem 19775 xpsring1d 20312 pzriprnglem3 21473 pzriprnglem8 21478 pzriprnglem10 21480 ucnima 24277 ltgseg 28523 suppovss 32597 elrlocbasi 33121 qtophaus 33651 esum2dlem 33925 bj-mpomptALT 36826 fourierdlem42 45770 |
Copyright terms: Public domain | W3C validator |