![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > epel | Structured version Visualization version GIF version |
Description: The membership relation and the membership predicate agree when the "containing" class is a setvar. Definition 1.6 of [Schloeder] p. 1. (Contributed by NM, 13-Aug-1995.) Replace the first setvar variable with a class variable. (Revised by BJ, 13-Sep-2022.) |
Ref | Expression |
---|---|
epel | ⊢ (𝐴 E 𝑥 ↔ 𝐴 ∈ 𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3474 | . 2 ⊢ 𝑥 ∈ V | |
2 | 1 | epeli 5579 | 1 ⊢ (𝐴 E 𝑥 ↔ 𝐴 ∈ 𝑥) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∈ wcel 2099 class class class wbr 5143 E cep 5576 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2699 ax-sep 5294 ax-nul 5301 ax-pr 5424 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-ne 2937 df-rab 3429 df-v 3472 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4320 df-if 4526 df-sn 4626 df-pr 4628 df-op 4632 df-br 5144 df-opab 5206 df-eprel 5577 |
This theorem is referenced by: epse 5656 dfepfr 5658 epfrc 5659 wecmpep 5665 wetrep 5666 dmep 5921 rnep 5924 epweon 7772 epweonALT 7773 smoiso 8377 smoiso2 8384 ordunifi 9312 ordiso2 9533 ordtypelem8 9543 oismo 9558 wofib 9563 dford2 9638 noinfep 9678 oemapso 9700 wemapwe 9715 alephiso 10116 cflim2 10281 fin23lem27 10346 om2uzisoi 13946 om2noseqiso 28169 bnj219 34359 nummin 34709 efrunt 35302 dftr6 35340 dffr5 35343 elpotr 35372 dfon2lem9 35382 dfon2 35383 brsset 35480 dfon3 35483 brbigcup 35489 brapply 35529 brcup 35530 brcap 35531 dfint3 35543 dfssr2 37966 onsupuni 42648 onsupmaxb 42658 |
Copyright terms: Public domain | W3C validator |