![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eqabi | Structured version Visualization version GIF version |
Description: Equality of a class variable and a class abstraction (inference form). (Contributed by NM, 26-May-1993.) Avoid ax-11 2146. (Revised by Wolf Lammen, 6-May-2023.) |
Ref | Expression |
---|---|
eqabi.1 | ⊢ (𝑥 ∈ 𝐴 ↔ 𝜑) |
Ref | Expression |
---|---|
eqabi | ⊢ 𝐴 = {𝑥 ∣ 𝜑} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqabi.1 | . . . 4 ⊢ (𝑥 ∈ 𝐴 ↔ 𝜑) | |
2 | 1 | a1i 11 | . . 3 ⊢ (⊤ → (𝑥 ∈ 𝐴 ↔ 𝜑)) |
3 | 2 | eqabdv 2859 | . 2 ⊢ (⊤ → 𝐴 = {𝑥 ∣ 𝜑}) |
4 | 3 | mptru 1540 | 1 ⊢ 𝐴 = {𝑥 ∣ 𝜑} |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1533 ⊤wtru 1534 ∈ wcel 2098 {cab 2702 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2696 |
This theorem depends on definitions: df-bi 206 df-an 395 df-tru 1536 df-ex 1774 df-sb 2060 df-clab 2703 df-cleq 2717 df-clel 2802 |
This theorem is referenced by: abid1 2862 cbvralcsf 3930 cbvreucsf 3932 cbvrabcsf 3933 dfsymdif4 4243 dfsymdif2 4245 dfpr2 4644 dftp2 4689 iunid 5058 0iin 5062 pwpwab 5101 epse 5655 pwvabrel 5723 fv3 6909 fo1st 8009 fo2nd 8010 xp2 8026 tfrlem3 8395 ixpconstg 8921 ixp0x 8941 ruv 9623 dfom4 9670 cardnum 10115 alephiso 10119 nnzrab 12618 nn0zrab 12619 qnnen 16187 bdayfo 27626 madeval2 27796 h2hcau 30831 dfch2 31259 hhcno 31756 hhcnf 31757 pjhmopidm 32035 fobigcup 35552 dfsingles2 35573 dfrecs2 35602 dfrdg4 35603 dfint3 35604 bj-snglinv 36507 ecres 37805 dfdm6 37828 ruvALT 42157 rp-abid 42871 dfuniv2 43803 compeq 43941 dfnrm2 48061 dfnrm3 48062 |
Copyright terms: Public domain | W3C validator |