MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iunid Structured version   Visualization version   GIF version

Theorem iunid 5065
Description: An indexed union of singletons recovers the index set. (Contributed by NM, 6-Sep-2005.) (Proof shortened by SN, 15-Jan-2025.)
Assertion
Ref Expression
iunid 𝑥𝐴 {𝑥} = 𝐴
Distinct variable group:   𝑥,𝐴

Proof of Theorem iunid
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-iun 5000 . 2 𝑥𝐴 {𝑥} = {𝑦 ∣ ∃𝑥𝐴 𝑦 ∈ {𝑥}}
2 clel5 3653 . . . 4 (𝑦𝐴 ↔ ∃𝑥𝐴 𝑦 = 𝑥)
3 velsn 4646 . . . . 5 (𝑦 ∈ {𝑥} ↔ 𝑦 = 𝑥)
43rexbii 3090 . . . 4 (∃𝑥𝐴 𝑦 ∈ {𝑥} ↔ ∃𝑥𝐴 𝑦 = 𝑥)
52, 4bitr4i 277 . . 3 (𝑦𝐴 ↔ ∃𝑥𝐴 𝑦 ∈ {𝑥})
65eqabi 2864 . 2 𝐴 = {𝑦 ∣ ∃𝑥𝐴 𝑦 ∈ {𝑥}}
71, 6eqtr4i 2758 1 𝑥𝐴 {𝑥} = 𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1533  wcel 2098  {cab 2704  wrex 3066  {csn 4630   ciun 4998
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2698
This theorem depends on definitions:  df-bi 206  df-an 395  df-tru 1536  df-ex 1774  df-sb 2060  df-clab 2705  df-cleq 2719  df-clel 2805  df-rex 3067  df-v 3473  df-sn 4631  df-iun 5000
This theorem is referenced by:  iunxpconst  5752  fvn0ssdmfun  7087  abnexg  7762  xpexgALT  7989  uniqs  8800  rankcf  10806  dprd2da  20004  t1ficld  23249  discmp  23320  xkoinjcn  23609  metnrmlem2  24794  ovoliunlem1  25449  i1fima  25625  i1fd  25628  itg1addlem5  25648  fnpreimac  32475  gsumpart  32787  elrspunidl  33162  sibfof  33965  bnj1415  34674  cvmlift2lem12  34929  poimirlem30  37128  itg2addnclem2  37150  ftc1anclem6  37176  uniqsALTV  37805  salexct3  45732  salgensscntex  45734  ctvonmbl  46079  vonct  46083
  Copyright terms: Public domain W3C validator
OSZAR »