![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iunid | Structured version Visualization version GIF version |
Description: An indexed union of singletons recovers the index set. (Contributed by NM, 6-Sep-2005.) (Proof shortened by SN, 15-Jan-2025.) |
Ref | Expression |
---|---|
iunid | ⊢ ∪ 𝑥 ∈ 𝐴 {𝑥} = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-iun 5000 | . 2 ⊢ ∪ 𝑥 ∈ 𝐴 {𝑥} = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 ∈ {𝑥}} | |
2 | clel5 3653 | . . . 4 ⊢ (𝑦 ∈ 𝐴 ↔ ∃𝑥 ∈ 𝐴 𝑦 = 𝑥) | |
3 | velsn 4646 | . . . . 5 ⊢ (𝑦 ∈ {𝑥} ↔ 𝑦 = 𝑥) | |
4 | 3 | rexbii 3090 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 𝑦 ∈ {𝑥} ↔ ∃𝑥 ∈ 𝐴 𝑦 = 𝑥) |
5 | 2, 4 | bitr4i 277 | . . 3 ⊢ (𝑦 ∈ 𝐴 ↔ ∃𝑥 ∈ 𝐴 𝑦 ∈ {𝑥}) |
6 | 5 | eqabi 2864 | . 2 ⊢ 𝐴 = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 ∈ {𝑥}} |
7 | 1, 6 | eqtr4i 2758 | 1 ⊢ ∪ 𝑥 ∈ 𝐴 {𝑥} = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1533 ∈ wcel 2098 {cab 2704 ∃wrex 3066 {csn 4630 ∪ ciun 4998 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2698 |
This theorem depends on definitions: df-bi 206 df-an 395 df-tru 1536 df-ex 1774 df-sb 2060 df-clab 2705 df-cleq 2719 df-clel 2805 df-rex 3067 df-v 3473 df-sn 4631 df-iun 5000 |
This theorem is referenced by: iunxpconst 5752 fvn0ssdmfun 7087 abnexg 7762 xpexgALT 7989 uniqs 8800 rankcf 10806 dprd2da 20004 t1ficld 23249 discmp 23320 xkoinjcn 23609 metnrmlem2 24794 ovoliunlem1 25449 i1fima 25625 i1fd 25628 itg1addlem5 25648 fnpreimac 32475 gsumpart 32787 elrspunidl 33162 sibfof 33965 bnj1415 34674 cvmlift2lem12 34929 poimirlem30 37128 itg2addnclem2 37150 ftc1anclem6 37176 uniqsALTV 37805 salexct3 45732 salgensscntex 45734 ctvonmbl 46079 vonct 46083 |
Copyright terms: Public domain | W3C validator |