MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqoreldif Structured version   Visualization version   GIF version

Theorem eqoreldif 4684
Description: An element of a set is either equal to another element of the set or a member of the difference of the set and the singleton containing the other element. (Contributed by AV, 25-Aug-2020.) (Proof shortened by JJ, 23-Jul-2021.)
Assertion
Ref Expression
eqoreldif (𝐵𝐶 → (𝐴𝐶 ↔ (𝐴 = 𝐵𝐴 ∈ (𝐶 ∖ {𝐵}))))

Proof of Theorem eqoreldif
StepHypRef Expression
1 simpl 482 . . . . 5 ((𝐴𝐶 ∧ ¬ 𝐴 = 𝐵) → 𝐴𝐶)
2 elsni 4641 . . . . . . 7 (𝐴 ∈ {𝐵} → 𝐴 = 𝐵)
32con3i 154 . . . . . 6 𝐴 = 𝐵 → ¬ 𝐴 ∈ {𝐵})
43adantl 481 . . . . 5 ((𝐴𝐶 ∧ ¬ 𝐴 = 𝐵) → ¬ 𝐴 ∈ {𝐵})
51, 4eldifd 3956 . . . 4 ((𝐴𝐶 ∧ ¬ 𝐴 = 𝐵) → 𝐴 ∈ (𝐶 ∖ {𝐵}))
65ex 412 . . 3 (𝐴𝐶 → (¬ 𝐴 = 𝐵𝐴 ∈ (𝐶 ∖ {𝐵})))
76orrd 862 . 2 (𝐴𝐶 → (𝐴 = 𝐵𝐴 ∈ (𝐶 ∖ {𝐵})))
8 eleq1a 2824 . . 3 (𝐵𝐶 → (𝐴 = 𝐵𝐴𝐶))
9 eldifi 4122 . . . 4 (𝐴 ∈ (𝐶 ∖ {𝐵}) → 𝐴𝐶)
109a1i 11 . . 3 (𝐵𝐶 → (𝐴 ∈ (𝐶 ∖ {𝐵}) → 𝐴𝐶))
118, 10jaod 858 . 2 (𝐵𝐶 → ((𝐴 = 𝐵𝐴 ∈ (𝐶 ∖ {𝐵})) → 𝐴𝐶))
127, 11impbid2 225 1 (𝐵𝐶 → (𝐴𝐶 ↔ (𝐴 = 𝐵𝐴 ∈ (𝐶 ∖ {𝐵}))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 846   = wceq 1534  wcel 2099  cdif 3942  {csn 4624
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2699
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-tru 1537  df-ex 1775  df-sb 2061  df-clab 2706  df-cleq 2720  df-clel 2806  df-v 3472  df-dif 3948  df-sn 4625
This theorem is referenced by:  lcmfunsnlem2  16604
  Copyright terms: Public domain W3C validator
OSZAR »