MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  exp4b Structured version   Visualization version   GIF version

Theorem exp4b 430
Description: An exportation inference. (Contributed by NM, 26-Apr-1994.) (Proof shortened by Wolf Lammen, 23-Nov-2012.) Shorten exp4a 431. (Revised by Wolf Lammen, 20-Jul-2021.)
Hypothesis
Ref Expression
exp4b.1 ((𝜑𝜓) → ((𝜒𝜃) → 𝜏))
Assertion
Ref Expression
exp4b (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))

Proof of Theorem exp4b
StepHypRef Expression
1 exp4b.1 . . 3 ((𝜑𝜓) → ((𝜒𝜃) → 𝜏))
21expd 415 . 2 ((𝜑𝜓) → (𝜒 → (𝜃𝜏)))
32ex 412 1 (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396
This theorem is referenced by:  exp4a  431  exp43  436  somo  5627  tz7.7  6395  f1oweALT  7976  soseq  8164  onfununi  8362  odi  8600  omeu  8606  nndi  8644  inf3lem2  9653  axdc3lem2  10475  genpnmax  11031  mulclprlem  11043  distrlem5pr  11051  reclem4pr  11074  lemul12a  12103  sup2  12201  nnmulcl  12267  zbtwnre  12961  elfz0fzfz0  13639  fzofzim  13712  fzo1fzo0n0  13716  elincfzoext  13723  elfzodifsumelfzo  13731  le2sq2  14132  expnbnd  14227  swrdswrd  14688  swrdccat3blem  14722  climbdd  15651  dvdslegcd  16479  oddprmgt2  16670  unbenlem  16877  infpnlem1  16879  prmgaplem6  17025  lmodvsdi  20768  lspsolvlem  21030  lbsextlem2  21047  gsummoncoe1  22227  cpmatmcllem  22633  mp2pm2mplem4  22724  1stccnp  23379  itg2le  25682  ewlkle  29432  clwlkclwwlklem2a  29821  3vfriswmgr  30101  frgrwopreg  30146  frgr2wwlk1  30152  frgrreg  30217  spansneleq  31393  elspansn4  31396  cvmdi  32147  atcvat3i  32219  mdsymlem3  32228  slmdvsdi  32935  satfv0  34968  satffunlem1lem1  35012  satffunlem2lem1  35014  mclsppslem  35193  dfon2lem8  35386  heicant  37128  areacirclem1  37181  areacirclem2  37182  areacirclem4  37184  areacirc  37186  fzmul  37214  cvlexch1  38800  hlrelat2  38876  cvrat3  38915  snatpsubN  39223  pmaple  39234  sn-sup2  42024  fzopredsuc  46703  gbegt5  47101
  Copyright terms: Public domain W3C validator
OSZAR »