![]() |
Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > f002 | Structured version Visualization version GIF version |
Description: A function with an empty codomain must have empty domain. (Contributed by Zhi Wang, 1-Oct-2024.) |
Ref | Expression |
---|---|
f002.1 | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
Ref | Expression |
---|---|
f002 | ⊢ (𝜑 → (𝐵 = ∅ → 𝐴 = ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f002.1 | . 2 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
2 | feq3 6700 | . . 3 ⊢ (𝐵 = ∅ → (𝐹:𝐴⟶𝐵 ↔ 𝐹:𝐴⟶∅)) | |
3 | f00 6774 | . . . 4 ⊢ (𝐹:𝐴⟶∅ ↔ (𝐹 = ∅ ∧ 𝐴 = ∅)) | |
4 | 3 | simprbi 496 | . . 3 ⊢ (𝐹:𝐴⟶∅ → 𝐴 = ∅) |
5 | 2, 4 | syl6bi 253 | . 2 ⊢ (𝐵 = ∅ → (𝐹:𝐴⟶𝐵 → 𝐴 = ∅)) |
6 | 1, 5 | syl5com 31 | 1 ⊢ (𝜑 → (𝐵 = ∅ → 𝐴 = ∅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∅c0 4319 ⟶wf 6539 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5294 ax-nul 5301 ax-pr 5424 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-clab 2706 df-cleq 2720 df-clel 2806 df-ral 3058 df-rex 3067 df-rab 3429 df-v 3472 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4320 df-if 4526 df-sn 4626 df-pr 4628 df-op 4632 df-br 5144 df-opab 5206 df-id 5571 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-fun 6545 df-fn 6546 df-f 6547 |
This theorem is referenced by: fullthinc2 48044 thincciso 48046 |
Copyright terms: Public domain | W3C validator |