![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > f1fn | Structured version Visualization version GIF version |
Description: A one-to-one mapping is a function on its domain. (Contributed by NM, 8-Mar-2014.) |
Ref | Expression |
---|---|
f1fn | ⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹 Fn 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1f 6793 | . 2 ⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹:𝐴⟶𝐵) | |
2 | 1 | ffnd 6723 | 1 ⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹 Fn 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 Fn wfn 6543 –1-1→wf1 6545 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-f 6552 df-f1 6553 |
This theorem is referenced by: f1fun 6795 f1rel 6796 f1dm 6797 f1dmOLD 6798 f1ssr 6800 f1f1orn 6850 f1elima 7273 f1eqcocnv 7310 f1eqcocnvOLD 7311 domunsncan 9097 f1domfi2 9210 sbthfilem 9226 marypha2 9463 infdifsn 9681 acndom 10075 dfac12lem2 10168 ackbij1 10262 fin23lem32 10368 fin1a2lem5 10428 fin1a2lem6 10429 pwfseqlem1 10682 hashf1lem1 14448 hashf1lem1OLD 14449 hashf1 14451 kerf1ghm 19201 odf1o2 19528 frlmlbs 21731 f1lindf 21756 2ndcdisj 23373 qtopf1 23733 clwlkclwwlklem2 29823 f1rnen 32427 erdszelem10 34810 pibt2 36896 dihfn 40741 dihcl 40743 dih1dimatlem 40802 dochocss 40839 onsucf1o 42701 cantnfub 42750 cantnfub2 42751 gricushgr 47183 |
Copyright terms: Public domain | W3C validator |