MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ackbij1 Structured version   Visualization version   GIF version

Theorem ackbij1 10262
Description: The Ackermann bijection, part 1: each natural number can be uniquely coded in binary as a finite set of natural numbers and conversely. (Contributed by Stefan O'Rear, 18-Nov-2014.)
Hypothesis
Ref Expression
ackbij.f 𝐹 = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑦𝑥 ({𝑦} × 𝒫 𝑦)))
Assertion
Ref Expression
ackbij1 𝐹:(𝒫 ω ∩ Fin)–1-1-onto→ω
Distinct variable group:   𝑥,𝐹,𝑦

Proof of Theorem ackbij1
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ackbij.f . . 3 𝐹 = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑦𝑥 ({𝑦} × 𝒫 𝑦)))
21ackbij1lem17 10260 . 2 𝐹:(𝒫 ω ∩ Fin)–1-1→ω
3 f1f 6793 . . . 4 (𝐹:(𝒫 ω ∩ Fin)–1-1→ω → 𝐹:(𝒫 ω ∩ Fin)⟶ω)
4 frn 6729 . . . 4 (𝐹:(𝒫 ω ∩ Fin)⟶ω → ran 𝐹 ⊆ ω)
52, 3, 4mp2b 10 . . 3 ran 𝐹 ⊆ ω
6 eleq1 2817 . . . . 5 (𝑏 = ∅ → (𝑏 ∈ ran 𝐹 ↔ ∅ ∈ ran 𝐹))
7 eleq1 2817 . . . . 5 (𝑏 = 𝑎 → (𝑏 ∈ ran 𝐹𝑎 ∈ ran 𝐹))
8 eleq1 2817 . . . . 5 (𝑏 = suc 𝑎 → (𝑏 ∈ ran 𝐹 ↔ suc 𝑎 ∈ ran 𝐹))
9 peano1 7894 . . . . . . . 8 ∅ ∈ ω
10 ackbij1lem3 10246 . . . . . . . 8 (∅ ∈ ω → ∅ ∈ (𝒫 ω ∩ Fin))
119, 10ax-mp 5 . . . . . . 7 ∅ ∈ (𝒫 ω ∩ Fin)
121ackbij1lem13 10256 . . . . . . 7 (𝐹‘∅) = ∅
13 fveqeq2 6906 . . . . . . . 8 (𝑎 = ∅ → ((𝐹𝑎) = ∅ ↔ (𝐹‘∅) = ∅))
1413rspcev 3609 . . . . . . 7 ((∅ ∈ (𝒫 ω ∩ Fin) ∧ (𝐹‘∅) = ∅) → ∃𝑎 ∈ (𝒫 ω ∩ Fin)(𝐹𝑎) = ∅)
1511, 12, 14mp2an 691 . . . . . 6 𝑎 ∈ (𝒫 ω ∩ Fin)(𝐹𝑎) = ∅
16 f1fn 6794 . . . . . . . 8 (𝐹:(𝒫 ω ∩ Fin)–1-1→ω → 𝐹 Fn (𝒫 ω ∩ Fin))
172, 16ax-mp 5 . . . . . . 7 𝐹 Fn (𝒫 ω ∩ Fin)
18 fvelrnb 6959 . . . . . . 7 (𝐹 Fn (𝒫 ω ∩ Fin) → (∅ ∈ ran 𝐹 ↔ ∃𝑎 ∈ (𝒫 ω ∩ Fin)(𝐹𝑎) = ∅))
1917, 18ax-mp 5 . . . . . 6 (∅ ∈ ran 𝐹 ↔ ∃𝑎 ∈ (𝒫 ω ∩ Fin)(𝐹𝑎) = ∅)
2015, 19mpbir 230 . . . . 5 ∅ ∈ ran 𝐹
211ackbij1lem18 10261 . . . . . . . . 9 (𝑐 ∈ (𝒫 ω ∩ Fin) → ∃𝑏 ∈ (𝒫 ω ∩ Fin)(𝐹𝑏) = suc (𝐹𝑐))
2221adantl 481 . . . . . . . 8 ((𝑎 ∈ ω ∧ 𝑐 ∈ (𝒫 ω ∩ Fin)) → ∃𝑏 ∈ (𝒫 ω ∩ Fin)(𝐹𝑏) = suc (𝐹𝑐))
23 suceq 6435 . . . . . . . . . 10 ((𝐹𝑐) = 𝑎 → suc (𝐹𝑐) = suc 𝑎)
2423eqeq2d 2739 . . . . . . . . 9 ((𝐹𝑐) = 𝑎 → ((𝐹𝑏) = suc (𝐹𝑐) ↔ (𝐹𝑏) = suc 𝑎))
2524rexbidv 3175 . . . . . . . 8 ((𝐹𝑐) = 𝑎 → (∃𝑏 ∈ (𝒫 ω ∩ Fin)(𝐹𝑏) = suc (𝐹𝑐) ↔ ∃𝑏 ∈ (𝒫 ω ∩ Fin)(𝐹𝑏) = suc 𝑎))
2622, 25syl5ibcom 244 . . . . . . 7 ((𝑎 ∈ ω ∧ 𝑐 ∈ (𝒫 ω ∩ Fin)) → ((𝐹𝑐) = 𝑎 → ∃𝑏 ∈ (𝒫 ω ∩ Fin)(𝐹𝑏) = suc 𝑎))
2726rexlimdva 3152 . . . . . 6 (𝑎 ∈ ω → (∃𝑐 ∈ (𝒫 ω ∩ Fin)(𝐹𝑐) = 𝑎 → ∃𝑏 ∈ (𝒫 ω ∩ Fin)(𝐹𝑏) = suc 𝑎))
28 fvelrnb 6959 . . . . . . 7 (𝐹 Fn (𝒫 ω ∩ Fin) → (𝑎 ∈ ran 𝐹 ↔ ∃𝑐 ∈ (𝒫 ω ∩ Fin)(𝐹𝑐) = 𝑎))
2917, 28ax-mp 5 . . . . . 6 (𝑎 ∈ ran 𝐹 ↔ ∃𝑐 ∈ (𝒫 ω ∩ Fin)(𝐹𝑐) = 𝑎)
30 fvelrnb 6959 . . . . . . 7 (𝐹 Fn (𝒫 ω ∩ Fin) → (suc 𝑎 ∈ ran 𝐹 ↔ ∃𝑏 ∈ (𝒫 ω ∩ Fin)(𝐹𝑏) = suc 𝑎))
3117, 30ax-mp 5 . . . . . 6 (suc 𝑎 ∈ ran 𝐹 ↔ ∃𝑏 ∈ (𝒫 ω ∩ Fin)(𝐹𝑏) = suc 𝑎)
3227, 29, 313imtr4g 296 . . . . 5 (𝑎 ∈ ω → (𝑎 ∈ ran 𝐹 → suc 𝑎 ∈ ran 𝐹))
336, 7, 8, 7, 20, 32finds 7904 . . . 4 (𝑎 ∈ ω → 𝑎 ∈ ran 𝐹)
3433ssriv 3984 . . 3 ω ⊆ ran 𝐹
355, 34eqssi 3996 . 2 ran 𝐹 = ω
36 dff1o5 6848 . 2 (𝐹:(𝒫 ω ∩ Fin)–1-1-onto→ω ↔ (𝐹:(𝒫 ω ∩ Fin)–1-1→ω ∧ ran 𝐹 = ω))
372, 35, 36mpbir2an 710 1 𝐹:(𝒫 ω ∩ Fin)–1-1-onto→ω
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395   = wceq 1534  wcel 2099  wrex 3067  cin 3946  wss 3947  c0 4323  𝒫 cpw 4603  {csn 4629   ciun 4996  cmpt 5231   × cxp 5676  ran crn 5679  suc csuc 6371   Fn wfn 6543  wf 6544  1-1wf1 6545  1-1-ontowf1o 6547  cfv 6548  ωcom 7870  Fincfn 8964  cardccrd 9959
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-int 4950  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-ov 7423  df-oprab 7424  df-mpo 7425  df-om 7871  df-1st 7993  df-2nd 7994  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-2o 8488  df-oadd 8491  df-er 8725  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-dju 9925  df-card 9963
This theorem is referenced by:  fictb  10269  ackbijnn  15807
  Copyright terms: Public domain W3C validator
OSZAR »