![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > f1oeq3d | Structured version Visualization version GIF version |
Description: Equality deduction for one-to-one onto functions. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
f1oeq3d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
f1oeq3d | ⊢ (𝜑 → (𝐹:𝐶–1-1-onto→𝐴 ↔ 𝐹:𝐶–1-1-onto→𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1oeq3d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | f1oeq3 6832 | . 2 ⊢ (𝐴 = 𝐵 → (𝐹:𝐶–1-1-onto→𝐴 ↔ 𝐹:𝐶–1-1-onto→𝐵)) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝐹:𝐶–1-1-onto→𝐴 ↔ 𝐹:𝐶–1-1-onto→𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1533 –1-1-onto→wf1o 6550 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2698 |
This theorem depends on definitions: df-bi 206 df-an 395 df-tru 1536 df-ex 1774 df-sb 2060 df-clab 2705 df-cleq 2719 df-clel 2805 df-v 3473 df-in 3954 df-ss 3964 df-f 6555 df-f1 6556 df-fo 6557 df-f1o 6558 |
This theorem is referenced by: resdif 6863 f1osng 6883 f1oresrab 7140 fveqf1o 7316 isoini2 7351 oacomf1o 8590 mapsnf1o 8962 domss2 9165 dif1enlem 9185 dif1enlemOLD 9186 infn0 9336 wemapwe 9726 oef1o 9727 cnfcomlem 9728 cnfcom3 9733 cnfcom3clem 9734 infxpenc 10047 infxpenc2lem1 10048 infxpenc2 10051 ackbij2lem2 10269 hsmexlem1 10455 fsumss 15709 fsumcnv 15757 fprodss 15930 fprodcnv 15965 pwssnf1o 17485 catcisolem 18104 equivestrcsetc 18148 yoniso 18282 gsumpropd 18643 gsumpropd2lem 18644 xpsmnd 18739 xpsgrp 19020 ghmqusker 19243 gsumval3lem1 19865 gsumval3lem2 19866 gsumcom2 19935 xpsrngd 20124 xpsringd 20273 rngqiprngim 21199 coe1mul2lem2 22192 scmatrngiso 22456 m2cpmrngiso 22678 cncfcnvcn 24864 isismt 28356 usgrf1oedg 29038 wlkiswwlks2lem5 29702 clwwlkvbij 29941 eupthres 30043 eupthp1 30044 cycpmconjvlem 32880 tocyccntz 32883 idomsubr 33013 dimkerim 33330 poimirlem4 37102 poimirlem9 37107 rngoisoval 37455 frlmsnic 41773 sge0f1o 45772 nnfoctbdj 45846 f1oresf1o 46672 grimidvtxedg 47225 ushggricedg 47244 |
Copyright terms: Public domain | W3C validator |