![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rngqiprngim | Structured version Visualization version GIF version |
Description: 𝐹 is an isomorphism of non-unital rings. (Contributed by AV, 21-Feb-2025.) |
Ref | Expression |
---|---|
rng2idlring.r | ⊢ (𝜑 → 𝑅 ∈ Rng) |
rng2idlring.i | ⊢ (𝜑 → 𝐼 ∈ (2Ideal‘𝑅)) |
rng2idlring.j | ⊢ 𝐽 = (𝑅 ↾s 𝐼) |
rng2idlring.u | ⊢ (𝜑 → 𝐽 ∈ Ring) |
rng2idlring.b | ⊢ 𝐵 = (Base‘𝑅) |
rng2idlring.t | ⊢ · = (.r‘𝑅) |
rng2idlring.1 | ⊢ 1 = (1r‘𝐽) |
rngqiprngim.g | ⊢ ∼ = (𝑅 ~QG 𝐼) |
rngqiprngim.q | ⊢ 𝑄 = (𝑅 /s ∼ ) |
rngqiprngim.c | ⊢ 𝐶 = (Base‘𝑄) |
rngqiprngim.p | ⊢ 𝑃 = (𝑄 ×s 𝐽) |
rngqiprngim.f | ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ 〈[𝑥] ∼ , ( 1 · 𝑥)〉) |
Ref | Expression |
---|---|
rngqiprngim | ⊢ (𝜑 → 𝐹 ∈ (𝑅 RngIso 𝑃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rng2idlring.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ Rng) | |
2 | rng2idlring.i | . . 3 ⊢ (𝜑 → 𝐼 ∈ (2Ideal‘𝑅)) | |
3 | rng2idlring.j | . . 3 ⊢ 𝐽 = (𝑅 ↾s 𝐼) | |
4 | rng2idlring.u | . . 3 ⊢ (𝜑 → 𝐽 ∈ Ring) | |
5 | rng2idlring.b | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
6 | rng2idlring.t | . . 3 ⊢ · = (.r‘𝑅) | |
7 | rng2idlring.1 | . . 3 ⊢ 1 = (1r‘𝐽) | |
8 | rngqiprngim.g | . . 3 ⊢ ∼ = (𝑅 ~QG 𝐼) | |
9 | rngqiprngim.q | . . 3 ⊢ 𝑄 = (𝑅 /s ∼ ) | |
10 | rngqiprngim.c | . . 3 ⊢ 𝐶 = (Base‘𝑄) | |
11 | rngqiprngim.p | . . 3 ⊢ 𝑃 = (𝑄 ×s 𝐽) | |
12 | rngqiprngim.f | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ 〈[𝑥] ∼ , ( 1 · 𝑥)〉) | |
13 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 | rngqiprngho 21187 | . 2 ⊢ (𝜑 → 𝐹 ∈ (𝑅 RngHom 𝑃)) |
14 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 | rngqiprngimf1 21184 | . . . 4 ⊢ (𝜑 → 𝐹:𝐵–1-1→(𝐶 × 𝐼)) |
15 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 | rngqiprngimfo 21185 | . . . 4 ⊢ (𝜑 → 𝐹:𝐵–onto→(𝐶 × 𝐼)) |
16 | df-f1o 6550 | . . . 4 ⊢ (𝐹:𝐵–1-1-onto→(𝐶 × 𝐼) ↔ (𝐹:𝐵–1-1→(𝐶 × 𝐼) ∧ 𝐹:𝐵–onto→(𝐶 × 𝐼))) | |
17 | 14, 15, 16 | sylanbrc 582 | . . 3 ⊢ (𝜑 → 𝐹:𝐵–1-1-onto→(𝐶 × 𝐼)) |
18 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 | rngqipbas 21179 | . . . 4 ⊢ (𝜑 → (Base‘𝑃) = (𝐶 × 𝐼)) |
19 | 18 | f1oeq3d 6831 | . . 3 ⊢ (𝜑 → (𝐹:𝐵–1-1-onto→(Base‘𝑃) ↔ 𝐹:𝐵–1-1-onto→(𝐶 × 𝐼))) |
20 | 17, 19 | mpbird 257 | . 2 ⊢ (𝜑 → 𝐹:𝐵–1-1-onto→(Base‘𝑃)) |
21 | 11 | ovexi 7449 | . . 3 ⊢ 𝑃 ∈ V |
22 | eqid 2728 | . . . 4 ⊢ (Base‘𝑃) = (Base‘𝑃) | |
23 | 5, 22 | isrngim2 20386 | . . 3 ⊢ ((𝑅 ∈ Rng ∧ 𝑃 ∈ V) → (𝐹 ∈ (𝑅 RngIso 𝑃) ↔ (𝐹 ∈ (𝑅 RngHom 𝑃) ∧ 𝐹:𝐵–1-1-onto→(Base‘𝑃)))) |
24 | 1, 21, 23 | sylancl 585 | . 2 ⊢ (𝜑 → (𝐹 ∈ (𝑅 RngIso 𝑃) ↔ (𝐹 ∈ (𝑅 RngHom 𝑃) ∧ 𝐹:𝐵–1-1-onto→(Base‘𝑃)))) |
25 | 13, 20, 24 | mpbir2and 712 | 1 ⊢ (𝜑 → 𝐹 ∈ (𝑅 RngIso 𝑃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1534 ∈ wcel 2099 Vcvv 3470 〈cop 4631 ↦ cmpt 5226 × cxp 5671 –1-1→wf1 6540 –onto→wfo 6541 –1-1-onto→wf1o 6542 ‘cfv 6543 (class class class)co 7415 [cec 8717 Basecbs 17174 ↾s cress 17203 .rcmulr 17228 /s cqus 17481 ×s cxps 17482 ~QG cqg 19071 Rngcrng 20086 1rcur 20115 Ringcrg 20167 RngHom crnghm 20367 RngIso crngim 20368 2Idealc2idl 21137 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5280 ax-sep 5294 ax-nul 5301 ax-pow 5360 ax-pr 5424 ax-un 7735 ax-cnex 11189 ax-resscn 11190 ax-1cn 11191 ax-icn 11192 ax-addcl 11193 ax-addrcl 11194 ax-mulcl 11195 ax-mulrcl 11196 ax-mulcom 11197 ax-addass 11198 ax-mulass 11199 ax-distr 11200 ax-i2m1 11201 ax-1ne0 11202 ax-1rid 11203 ax-rnegex 11204 ax-rrecex 11205 ax-cnre 11206 ax-pre-lttri 11207 ax-pre-lttrn 11208 ax-pre-ltadd 11209 ax-pre-mulgt0 11210 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-rmo 3372 df-reu 3373 df-rab 3429 df-v 3472 df-sbc 3776 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3964 df-nul 4320 df-if 4526 df-pw 4601 df-sn 4626 df-pr 4628 df-tp 4630 df-op 4632 df-uni 4905 df-iun 4994 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5571 df-eprel 5577 df-po 5585 df-so 5586 df-fr 5628 df-we 5630 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7371 df-ov 7418 df-oprab 7419 df-mpo 7420 df-om 7866 df-1st 7988 df-2nd 7989 df-tpos 8226 df-frecs 8281 df-wrecs 8312 df-recs 8386 df-rdg 8425 df-1o 8481 df-2o 8482 df-er 8719 df-ec 8721 df-qs 8725 df-map 8841 df-ixp 8911 df-en 8959 df-dom 8960 df-sdom 8961 df-fin 8962 df-sup 9460 df-inf 9461 df-pnf 11275 df-mnf 11276 df-xr 11277 df-ltxr 11278 df-le 11279 df-sub 11471 df-neg 11472 df-nn 12238 df-2 12300 df-3 12301 df-4 12302 df-5 12303 df-6 12304 df-7 12305 df-8 12306 df-9 12307 df-n0 12498 df-z 12584 df-dec 12703 df-uz 12848 df-fz 13512 df-struct 17110 df-sets 17127 df-slot 17145 df-ndx 17157 df-base 17175 df-ress 17204 df-plusg 17240 df-mulr 17241 df-sca 17243 df-vsca 17244 df-ip 17245 df-tset 17246 df-ple 17247 df-ds 17249 df-hom 17251 df-cco 17252 df-0g 17417 df-prds 17423 df-imas 17484 df-qus 17485 df-xps 17486 df-mgm 18594 df-mgmhm 18646 df-sgrp 18673 df-mnd 18689 df-grp 18887 df-minusg 18888 df-sbg 18889 df-subg 19072 df-nsg 19073 df-eqg 19074 df-ghm 19162 df-cmn 19731 df-abl 19732 df-mgp 20069 df-rng 20087 df-ur 20116 df-ring 20169 df-oppr 20267 df-dvdsr 20290 df-unit 20291 df-invr 20321 df-rnghm 20369 df-rngim 20370 df-subrng 20477 df-lss 20810 df-sra 21052 df-rgmod 21053 df-lidl 21098 df-2idl 21138 |
This theorem is referenced by: rngringbdlem2 21191 rngqiprngu 21202 |
Copyright terms: Public domain | W3C validator |