![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ovexi | Structured version Visualization version GIF version |
Description: The result of an operation is a set. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
ovexi.1 | ⊢ 𝐴 = (𝐵𝐹𝐶) |
Ref | Expression |
---|---|
ovexi | ⊢ 𝐴 ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ovexi.1 | . 2 ⊢ 𝐴 = (𝐵𝐹𝐶) | |
2 | ovex 7447 | . 2 ⊢ (𝐵𝐹𝐶) ∈ V | |
3 | 1, 2 | eqeltri 2825 | 1 ⊢ 𝐴 ∈ V |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1534 ∈ wcel 2099 Vcvv 3470 (class class class)co 7414 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2699 ax-nul 5300 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-ne 2937 df-v 3472 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4319 df-sn 4625 df-pr 4627 df-uni 4904 df-iota 6494 df-fv 6550 df-ov 7417 |
This theorem is referenced by: negex 11482 decex 12705 cshwsexaOLD 14801 eulerthlem2 16744 subccatid 17825 funcres2c 17883 ressffth 17920 fuccofval 17943 fuchom 17945 fuchomOLD 17946 fuccatid 17954 xpccatid 18172 gsumress 18635 prdssgrpd 18686 smndex1mgm 18852 eqgen 19129 quselbas 19132 quseccl0 19133 qus0subgbas 19146 orbsta 19257 sylow2blem1 19568 sylow2blem2 19569 frgpnabllem1 19821 rngqipbas 21178 rngqiprngimf 21180 rngqiprngghm 21182 rngqiprngimf1 21183 rngqiprnglin 21185 rngqiprngim 21187 rngqiprngfulem1 21194 znle 21459 znbas 21470 znzrhval 21473 relt 21540 retos 21543 frlmlbs 21724 lsslindf 21757 lsslinds 21758 uvcendim 21774 subrgmvr 21964 opsrle 21978 subrgascl 22003 evl1fval 22240 matgsum 22332 matmulr 22333 scmatghm 22428 marepvfval 22460 m2cpmmhm 22640 cpm2mfval 22644 cpmadumatpolylem2 22777 cldsubg 24008 nghmfval 24632 pi1bas 24958 dv11cn 25927 quotval 26220 pserdvlem2 26358 ang180lem3 26736 dchrptlem2 27191 usgrexmpllem 29066 nbusgrf1o1 29176 crctcshlem3 29623 2pthon3v 29747 konigsberglem5 30059 konigsberg 30060 bloval 30584 dpval 32607 rlocbas 32975 rloccring 32978 rloc0g 32979 rloc1r 32980 rlocf1 32981 zringfrac 32990 evls1vsca 33245 asclply1subcl 33251 resssra 33277 qusdimsum 33316 satfv1fvfmla1 35027 2goelgoanfmla1 35028 satefvfmla1 35029 cdleme31snd 39853 evlsvvvallem2 41789 evlsvvval 41790 evlsmhpvvval 41822 mhphf 41824 c0exALT 41828 prjcrvfval 42049 prjcrvval 42050 mnringmulrd 43652 subsalsal 45741 naryfvalixp 47696 naryfvalelfv 47699 rrxline 47801 inlinecirc02p 47854 inlinecirc02preu 47855 |
Copyright terms: Public domain | W3C validator |