MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovexi Structured version   Visualization version   GIF version

Theorem ovexi 7448
Description: The result of an operation is a set. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypothesis
Ref Expression
ovexi.1 𝐴 = (𝐵𝐹𝐶)
Assertion
Ref Expression
ovexi 𝐴 ∈ V

Proof of Theorem ovexi
StepHypRef Expression
1 ovexi.1 . 2 𝐴 = (𝐵𝐹𝐶)
2 ovex 7447 . 2 (𝐵𝐹𝐶) ∈ V
31, 2eqeltri 2825 1 𝐴 ∈ V
Colors of variables: wff setvar class
Syntax hints:   = wceq 1534  wcel 2099  Vcvv 3470  (class class class)co 7414
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2699  ax-nul 5300
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-tru 1537  df-fal 1547  df-ex 1775  df-sb 2061  df-clab 2706  df-cleq 2720  df-clel 2806  df-ne 2937  df-v 3472  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-nul 4319  df-sn 4625  df-pr 4627  df-uni 4904  df-iota 6494  df-fv 6550  df-ov 7417
This theorem is referenced by:  negex  11482  decex  12705  cshwsexaOLD  14801  eulerthlem2  16744  subccatid  17825  funcres2c  17883  ressffth  17920  fuccofval  17943  fuchom  17945  fuchomOLD  17946  fuccatid  17954  xpccatid  18172  gsumress  18635  prdssgrpd  18686  smndex1mgm  18852  eqgen  19129  quselbas  19132  quseccl0  19133  qus0subgbas  19146  orbsta  19257  sylow2blem1  19568  sylow2blem2  19569  frgpnabllem1  19821  rngqipbas  21178  rngqiprngimf  21180  rngqiprngghm  21182  rngqiprngimf1  21183  rngqiprnglin  21185  rngqiprngim  21187  rngqiprngfulem1  21194  znle  21459  znbas  21470  znzrhval  21473  relt  21540  retos  21543  frlmlbs  21724  lsslindf  21757  lsslinds  21758  uvcendim  21774  subrgmvr  21964  opsrle  21978  subrgascl  22003  evl1fval  22240  matgsum  22332  matmulr  22333  scmatghm  22428  marepvfval  22460  m2cpmmhm  22640  cpm2mfval  22644  cpmadumatpolylem2  22777  cldsubg  24008  nghmfval  24632  pi1bas  24958  dv11cn  25927  quotval  26220  pserdvlem2  26358  ang180lem3  26736  dchrptlem2  27191  usgrexmpllem  29066  nbusgrf1o1  29176  crctcshlem3  29623  2pthon3v  29747  konigsberglem5  30059  konigsberg  30060  bloval  30584  dpval  32607  rlocbas  32975  rloccring  32978  rloc0g  32979  rloc1r  32980  rlocf1  32981  zringfrac  32990  evls1vsca  33245  asclply1subcl  33251  resssra  33277  qusdimsum  33316  satfv1fvfmla1  35027  2goelgoanfmla1  35028  satefvfmla1  35029  cdleme31snd  39853  evlsvvvallem2  41789  evlsvvval  41790  evlsmhpvvval  41822  mhphf  41824  c0exALT  41828  prjcrvfval  42049  prjcrvval  42050  mnringmulrd  43652  subsalsal  45741  naryfvalixp  47696  naryfvalelfv  47699  rrxline  47801  inlinecirc02p  47854  inlinecirc02preu  47855
  Copyright terms: Public domain W3C validator
OSZAR »