MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rngqiprngimf1 Structured version   Visualization version   GIF version

Theorem rngqiprngimf1 21189
Description: 𝐹 is a one-to-one function from (the base set of) a non-unital ring to the product of the (base set of the) quotient with a two-sided ideal and the (base set of the) two-sided ideal. (Contributed by AV, 7-Mar-2025.)
Hypotheses
Ref Expression
rng2idlring.r (𝜑𝑅 ∈ Rng)
rng2idlring.i (𝜑𝐼 ∈ (2Ideal‘𝑅))
rng2idlring.j 𝐽 = (𝑅s 𝐼)
rng2idlring.u (𝜑𝐽 ∈ Ring)
rng2idlring.b 𝐵 = (Base‘𝑅)
rng2idlring.t · = (.r𝑅)
rng2idlring.1 1 = (1r𝐽)
rngqiprngim.g = (𝑅 ~QG 𝐼)
rngqiprngim.q 𝑄 = (𝑅 /s )
rngqiprngim.c 𝐶 = (Base‘𝑄)
rngqiprngim.p 𝑃 = (𝑄 ×s 𝐽)
rngqiprngim.f 𝐹 = (𝑥𝐵 ↦ ⟨[𝑥] , ( 1 · 𝑥)⟩)
Assertion
Ref Expression
rngqiprngimf1 (𝜑𝐹:𝐵1-1→(𝐶 × 𝐼))
Distinct variable groups:   𝑥,𝐶   𝑥,𝐼   𝑥,𝐵   𝜑,𝑥   𝑥,   𝑥, 1   𝑥, ·   𝑥,𝑅
Allowed substitution hints:   𝑃(𝑥)   𝑄(𝑥)   𝐹(𝑥)   𝐽(𝑥)

Proof of Theorem rngqiprngimf1
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 rng2idlring.r . . . . . . . . 9 (𝜑𝑅 ∈ Rng)
2 rng2idlring.i . . . . . . . . 9 (𝜑𝐼 ∈ (2Ideal‘𝑅))
3 rng2idlring.j . . . . . . . . . . . 12 𝐽 = (𝑅s 𝐼)
4 rng2idlring.u . . . . . . . . . . . . 13 (𝜑𝐽 ∈ Ring)
5 ringrng 20220 . . . . . . . . . . . . 13 (𝐽 ∈ Ring → 𝐽 ∈ Rng)
64, 5syl 17 . . . . . . . . . . . 12 (𝜑𝐽 ∈ Rng)
73, 6eqeltrrid 2834 . . . . . . . . . . 11 (𝜑 → (𝑅s 𝐼) ∈ Rng)
81, 2, 7rng2idlnsg 21159 . . . . . . . . . 10 (𝜑𝐼 ∈ (NrmSGrp‘𝑅))
9 nsgsubg 19112 . . . . . . . . . 10 (𝐼 ∈ (NrmSGrp‘𝑅) → 𝐼 ∈ (SubGrp‘𝑅))
108, 9syl 17 . . . . . . . . 9 (𝜑𝐼 ∈ (SubGrp‘𝑅))
11 rngqiprngim.q . . . . . . . . . . 11 𝑄 = (𝑅 /s )
12 rngqiprngim.g . . . . . . . . . . . 12 = (𝑅 ~QG 𝐼)
1312oveq2i 7431 . . . . . . . . . . 11 (𝑅 /s ) = (𝑅 /s (𝑅 ~QG 𝐼))
1411, 13eqtri 2756 . . . . . . . . . 10 𝑄 = (𝑅 /s (𝑅 ~QG 𝐼))
15 eqid 2728 . . . . . . . . . 10 (2Ideal‘𝑅) = (2Ideal‘𝑅)
1614, 15qus2idrng 21166 . . . . . . . . 9 ((𝑅 ∈ Rng ∧ 𝐼 ∈ (2Ideal‘𝑅) ∧ 𝐼 ∈ (SubGrp‘𝑅)) → 𝑄 ∈ Rng)
171, 2, 10, 16syl3anc 1369 . . . . . . . 8 (𝜑𝑄 ∈ Rng)
18 rnggrp 20097 . . . . . . . . 9 (𝑄 ∈ Rng → 𝑄 ∈ Grp)
1918grpmndd 18902 . . . . . . . 8 (𝑄 ∈ Rng → 𝑄 ∈ Mnd)
2017, 19syl 17 . . . . . . 7 (𝜑𝑄 ∈ Mnd)
21 ringmnd 20182 . . . . . . . 8 (𝐽 ∈ Ring → 𝐽 ∈ Mnd)
224, 21syl 17 . . . . . . 7 (𝜑𝐽 ∈ Mnd)
23 rngqiprngim.p . . . . . . . 8 𝑃 = (𝑄 ×s 𝐽)
2423xpsmnd0 18734 . . . . . . 7 ((𝑄 ∈ Mnd ∧ 𝐽 ∈ Mnd) → (0g𝑃) = ⟨(0g𝑄), (0g𝐽)⟩)
2520, 22, 24syl2anc 583 . . . . . 6 (𝜑 → (0g𝑃) = ⟨(0g𝑄), (0g𝐽)⟩)
2625sneqd 4641 . . . . 5 (𝜑 → {(0g𝑃)} = {⟨(0g𝑄), (0g𝐽)⟩})
2726imaeq2d 6063 . . . 4 (𝜑 → (𝐹 “ {(0g𝑃)}) = (𝐹 “ {⟨(0g𝑄), (0g𝐽)⟩}))
28 nfv 1910 . . . . . 6 𝑥𝜑
29 opex 5466 . . . . . . 7 ⟨[𝑥] , ( 1 · 𝑥)⟩ ∈ V
3029a1i 11 . . . . . 6 ((𝜑𝑥𝐵) → ⟨[𝑥] , ( 1 · 𝑥)⟩ ∈ V)
31 rngqiprngim.f . . . . . 6 𝐹 = (𝑥𝐵 ↦ ⟨[𝑥] , ( 1 · 𝑥)⟩)
3228, 30, 31fnmptd 6696 . . . . 5 (𝜑𝐹 Fn 𝐵)
33 fncnvima2 7070 . . . . 5 (𝐹 Fn 𝐵 → (𝐹 “ {⟨(0g𝑄), (0g𝐽)⟩}) = {𝑎𝐵 ∣ (𝐹𝑎) ∈ {⟨(0g𝑄), (0g𝐽)⟩}})
3432, 33syl 17 . . . 4 (𝜑 → (𝐹 “ {⟨(0g𝑄), (0g𝐽)⟩}) = {𝑎𝐵 ∣ (𝐹𝑎) ∈ {⟨(0g𝑄), (0g𝐽)⟩}})
35 rng2idlring.b . . . . . . . 8 𝐵 = (Base‘𝑅)
36 rng2idlring.t . . . . . . . 8 · = (.r𝑅)
37 rng2idlring.1 . . . . . . . 8 1 = (1r𝐽)
38 rngqiprngim.c . . . . . . . 8 𝐶 = (Base‘𝑄)
391, 2, 3, 4, 35, 36, 37, 12, 11, 38, 23, 31rngqiprngimfv 21187 . . . . . . 7 ((𝜑𝑎𝐵) → (𝐹𝑎) = ⟨[𝑎] , ( 1 · 𝑎)⟩)
4039eleq1d 2814 . . . . . 6 ((𝜑𝑎𝐵) → ((𝐹𝑎) ∈ {⟨(0g𝑄), (0g𝐽)⟩} ↔ ⟨[𝑎] , ( 1 · 𝑎)⟩ ∈ {⟨(0g𝑄), (0g𝐽)⟩}))
4140rabbidva 3436 . . . . 5 (𝜑 → {𝑎𝐵 ∣ (𝐹𝑎) ∈ {⟨(0g𝑄), (0g𝐽)⟩}} = {𝑎𝐵 ∣ ⟨[𝑎] , ( 1 · 𝑎)⟩ ∈ {⟨(0g𝑄), (0g𝐽)⟩}})
42 eceq1 8762 . . . . . . . 8 (𝑎 = (0g𝑅) → [𝑎] = [(0g𝑅)] )
43 oveq2 7428 . . . . . . . 8 (𝑎 = (0g𝑅) → ( 1 · 𝑎) = ( 1 · (0g𝑅)))
4442, 43opeq12d 4882 . . . . . . 7 (𝑎 = (0g𝑅) → ⟨[𝑎] , ( 1 · 𝑎)⟩ = ⟨[(0g𝑅)] , ( 1 · (0g𝑅))⟩)
4544eleq1d 2814 . . . . . 6 (𝑎 = (0g𝑅) → (⟨[𝑎] , ( 1 · 𝑎)⟩ ∈ {⟨(0g𝑄), (0g𝐽)⟩} ↔ ⟨[(0g𝑅)] , ( 1 · (0g𝑅))⟩ ∈ {⟨(0g𝑄), (0g𝐽)⟩}))
46 rnggrp 20097 . . . . . . . . 9 (𝑅 ∈ Rng → 𝑅 ∈ Grp)
471, 46syl 17 . . . . . . . 8 (𝜑𝑅 ∈ Grp)
4847grpmndd 18902 . . . . . . 7 (𝜑𝑅 ∈ Mnd)
49 eqid 2728 . . . . . . . 8 (0g𝑅) = (0g𝑅)
5035, 49mndidcl 18708 . . . . . . 7 (𝑅 ∈ Mnd → (0g𝑅) ∈ 𝐵)
5148, 50syl 17 . . . . . 6 (𝜑 → (0g𝑅) ∈ 𝐵)
5212eceq2i 8765 . . . . . . . . 9 [(0g𝑅)] = [(0g𝑅)](𝑅 ~QG 𝐼)
5314, 49qus0 19143 . . . . . . . . . 10 (𝐼 ∈ (NrmSGrp‘𝑅) → [(0g𝑅)](𝑅 ~QG 𝐼) = (0g𝑄))
548, 53syl 17 . . . . . . . . 9 (𝜑 → [(0g𝑅)](𝑅 ~QG 𝐼) = (0g𝑄))
5552, 54eqtrid 2780 . . . . . . . 8 (𝜑 → [(0g𝑅)] = (0g𝑄))
561, 2, 7rng2idl0 21160 . . . . . . . . . . 11 (𝜑 → (0g𝑅) ∈ 𝐼)
5735, 152idlss 21155 . . . . . . . . . . . 12 (𝐼 ∈ (2Ideal‘𝑅) → 𝐼𝐵)
582, 57syl 17 . . . . . . . . . . 11 (𝜑𝐼𝐵)
593, 35, 49ress0g 18721 . . . . . . . . . . 11 ((𝑅 ∈ Mnd ∧ (0g𝑅) ∈ 𝐼𝐼𝐵) → (0g𝑅) = (0g𝐽))
6048, 56, 58, 59syl3anc 1369 . . . . . . . . . 10 (𝜑 → (0g𝑅) = (0g𝐽))
6160oveq2d 7436 . . . . . . . . 9 (𝜑 → ( 1 · (0g𝑅)) = ( 1 · (0g𝐽)))
623, 36ressmulr 17287 . . . . . . . . . . 11 (𝐼 ∈ (2Ideal‘𝑅) → · = (.r𝐽))
632, 62syl 17 . . . . . . . . . 10 (𝜑· = (.r𝐽))
6463oveqd 7437 . . . . . . . . 9 (𝜑 → ( 1 · (0g𝐽)) = ( 1 (.r𝐽)(0g𝐽)))
65 eqid 2728 . . . . . . . . . . 11 (Base‘𝐽) = (Base‘𝐽)
6665, 37ringidcl 20201 . . . . . . . . . 10 (𝐽 ∈ Ring → 1 ∈ (Base‘𝐽))
67 eqid 2728 . . . . . . . . . . 11 (.r𝐽) = (.r𝐽)
68 eqid 2728 . . . . . . . . . . 11 (0g𝐽) = (0g𝐽)
6965, 67, 68ringrz 20229 . . . . . . . . . 10 ((𝐽 ∈ Ring ∧ 1 ∈ (Base‘𝐽)) → ( 1 (.r𝐽)(0g𝐽)) = (0g𝐽))
704, 66, 69syl2anc2 584 . . . . . . . . 9 (𝜑 → ( 1 (.r𝐽)(0g𝐽)) = (0g𝐽))
7161, 64, 703eqtrd 2772 . . . . . . . 8 (𝜑 → ( 1 · (0g𝑅)) = (0g𝐽))
7255, 71opeq12d 4882 . . . . . . 7 (𝜑 → ⟨[(0g𝑅)] , ( 1 · (0g𝑅))⟩ = ⟨(0g𝑄), (0g𝐽)⟩)
73 opex 5466 . . . . . . . 8 ⟨[(0g𝑅)] , ( 1 · (0g𝑅))⟩ ∈ V
7473elsn 4644 . . . . . . 7 (⟨[(0g𝑅)] , ( 1 · (0g𝑅))⟩ ∈ {⟨(0g𝑄), (0g𝐽)⟩} ↔ ⟨[(0g𝑅)] , ( 1 · (0g𝑅))⟩ = ⟨(0g𝑄), (0g𝐽)⟩)
7572, 74sylibr 233 . . . . . 6 (𝜑 → ⟨[(0g𝑅)] , ( 1 · (0g𝑅))⟩ ∈ {⟨(0g𝑄), (0g𝐽)⟩})
76 opex 5466 . . . . . . . . . 10 ⟨[𝑎] , ( 1 · 𝑎)⟩ ∈ V
7776elsn 4644 . . . . . . . . 9 (⟨[𝑎] , ( 1 · 𝑎)⟩ ∈ {⟨(0g𝑄), (0g𝐽)⟩} ↔ ⟨[𝑎] , ( 1 · 𝑎)⟩ = ⟨(0g𝑄), (0g𝐽)⟩)
7812ovexi 7454 . . . . . . . . . . 11 ∈ V
79 ecexg 8728 . . . . . . . . . . 11 ( ∈ V → [𝑎] ∈ V)
8078, 79ax-mp 5 . . . . . . . . . 10 [𝑎] ∈ V
81 ovex 7453 . . . . . . . . . 10 ( 1 · 𝑎) ∈ V
8280, 81opth 5478 . . . . . . . . 9 (⟨[𝑎] , ( 1 · 𝑎)⟩ = ⟨(0g𝑄), (0g𝐽)⟩ ↔ ([𝑎] = (0g𝑄) ∧ ( 1 · 𝑎) = (0g𝐽)))
8377, 82bitri 275 . . . . . . . 8 (⟨[𝑎] , ( 1 · 𝑎)⟩ ∈ {⟨(0g𝑄), (0g𝐽)⟩} ↔ ([𝑎] = (0g𝑄) ∧ ( 1 · 𝑎) = (0g𝐽)))
841, 2, 3, 4, 35, 36, 37, 12, 11rngqiprngimf1lem 21183 . . . . . . . 8 ((𝜑𝑎𝐵) → (([𝑎] = (0g𝑄) ∧ ( 1 · 𝑎) = (0g𝐽)) → 𝑎 = (0g𝑅)))
8583, 84biimtrid 241 . . . . . . 7 ((𝜑𝑎𝐵) → (⟨[𝑎] , ( 1 · 𝑎)⟩ ∈ {⟨(0g𝑄), (0g𝐽)⟩} → 𝑎 = (0g𝑅)))
8685imp 406 . . . . . 6 (((𝜑𝑎𝐵) ∧ ⟨[𝑎] , ( 1 · 𝑎)⟩ ∈ {⟨(0g𝑄), (0g𝐽)⟩}) → 𝑎 = (0g𝑅))
8745, 51, 75, 86rabeqsnd 4672 . . . . 5 (𝜑 → {𝑎𝐵 ∣ ⟨[𝑎] , ( 1 · 𝑎)⟩ ∈ {⟨(0g𝑄), (0g𝐽)⟩}} = {(0g𝑅)})
8841, 87eqtrd 2768 . . . 4 (𝜑 → {𝑎𝐵 ∣ (𝐹𝑎) ∈ {⟨(0g𝑄), (0g𝐽)⟩}} = {(0g𝑅)})
8927, 34, 883eqtrd 2772 . . 3 (𝜑 → (𝐹 “ {(0g𝑃)}) = {(0g𝑅)})
901, 2, 3, 4, 35, 36, 37, 12, 11, 38, 23, 31rngqiprngghm 21188 . . . 4 (𝜑𝐹 ∈ (𝑅 GrpHom 𝑃))
91 eqid 2728 . . . . 5 (Base‘𝑃) = (Base‘𝑃)
92 eqid 2728 . . . . 5 (0g𝑃) = (0g𝑃)
9335, 91, 49, 92kerf1ghm 19200 . . . 4 (𝐹 ∈ (𝑅 GrpHom 𝑃) → (𝐹:𝐵1-1→(Base‘𝑃) ↔ (𝐹 “ {(0g𝑃)}) = {(0g𝑅)}))
9490, 93syl 17 . . 3 (𝜑 → (𝐹:𝐵1-1→(Base‘𝑃) ↔ (𝐹 “ {(0g𝑃)}) = {(0g𝑅)}))
9589, 94mpbird 257 . 2 (𝜑𝐹:𝐵1-1→(Base‘𝑃))
96 eqidd 2729 . . 3 (𝜑𝐹 = 𝐹)
97 eqidd 2729 . . 3 (𝜑𝐵 = 𝐵)
981, 2, 3, 4, 35, 36, 37, 12, 11, 38, 23rngqipbas 21184 . . 3 (𝜑 → (Base‘𝑃) = (𝐶 × 𝐼))
9996, 97, 98f1eq123d 6831 . 2 (𝜑 → (𝐹:𝐵1-1→(Base‘𝑃) ↔ 𝐹:𝐵1-1→(𝐶 × 𝐼)))
10095, 99mpbid 231 1 (𝜑𝐹:𝐵1-1→(𝐶 × 𝐼))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1534  wcel 2099  {crab 3429  Vcvv 3471  wss 3947  {csn 4629  cop 4635  cmpt 5231   × cxp 5676  ccnv 5677  cima 5681   Fn wfn 6543  1-1wf1 6545  cfv 6548  (class class class)co 7420  [cec 8722  Basecbs 17179  s cress 17208  .rcmulr 17233  0gc0g 17420   /s cqus 17486   ×s cxps 17487  Mndcmnd 18693  Grpcgrp 18889  SubGrpcsubg 19074  NrmSGrpcnsg 19075   ~QG cqg 19076   GrpHom cghm 19166  Rngcrng 20091  1rcur 20120  Ringcrg 20172  2Idealc2idl 21142
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740  ax-cnex 11194  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214  ax-pre-mulgt0 11215
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3373  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-tp 4634  df-op 4636  df-uni 4909  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-riota 7376  df-ov 7423  df-oprab 7424  df-mpo 7425  df-om 7871  df-1st 7993  df-2nd 7994  df-tpos 8231  df-frecs 8286  df-wrecs 8317  df-recs 8391  df-rdg 8430  df-1o 8486  df-2o 8487  df-er 8724  df-ec 8726  df-qs 8730  df-map 8846  df-ixp 8916  df-en 8964  df-dom 8965  df-sdom 8966  df-fin 8967  df-sup 9465  df-inf 9466  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-sub 11476  df-neg 11477  df-nn 12243  df-2 12305  df-3 12306  df-4 12307  df-5 12308  df-6 12309  df-7 12310  df-8 12311  df-9 12312  df-n0 12503  df-z 12589  df-dec 12708  df-uz 12853  df-fz 13517  df-struct 17115  df-sets 17132  df-slot 17150  df-ndx 17162  df-base 17180  df-ress 17209  df-plusg 17245  df-mulr 17246  df-sca 17248  df-vsca 17249  df-ip 17250  df-tset 17251  df-ple 17252  df-ds 17254  df-hom 17256  df-cco 17257  df-0g 17422  df-prds 17428  df-imas 17489  df-qus 17490  df-xps 17491  df-mgm 18599  df-sgrp 18678  df-mnd 18694  df-grp 18892  df-minusg 18893  df-sbg 18894  df-subg 19077  df-nsg 19078  df-eqg 19079  df-ghm 19167  df-cmn 19736  df-abl 19737  df-mgp 20074  df-rng 20092  df-ur 20121  df-ring 20174  df-oppr 20272  df-dvdsr 20295  df-unit 20296  df-invr 20326  df-subrng 20482  df-lss 20815  df-sra 21057  df-rgmod 21058  df-lidl 21103  df-2idl 21143
This theorem is referenced by:  rngqiprngim  21193
  Copyright terms: Public domain W3C validator
OSZAR »