Step | Hyp | Ref
| Expression |
1 | | rng2idlring.b |
. 2
⊢ 𝐵 = (Base‘𝑅) |
2 | | eqid 2727 |
. 2
⊢
(Base‘𝑃) =
(Base‘𝑃) |
3 | | eqid 2727 |
. 2
⊢
(+g‘𝑅) = (+g‘𝑅) |
4 | | eqid 2727 |
. 2
⊢
(+g‘𝑃) = (+g‘𝑃) |
5 | | rng2idlring.r |
. . 3
⊢ (𝜑 → 𝑅 ∈ Rng) |
6 | | rnggrp 20103 |
. . 3
⊢ (𝑅 ∈ Rng → 𝑅 ∈ Grp) |
7 | 5, 6 | syl 17 |
. 2
⊢ (𝜑 → 𝑅 ∈ Grp) |
8 | | rng2idlring.i |
. . . 4
⊢ (𝜑 → 𝐼 ∈ (2Ideal‘𝑅)) |
9 | | rng2idlring.j |
. . . 4
⊢ 𝐽 = (𝑅 ↾s 𝐼) |
10 | | rng2idlring.u |
. . . 4
⊢ (𝜑 → 𝐽 ∈ Ring) |
11 | | rng2idlring.t |
. . . 4
⊢ · =
(.r‘𝑅) |
12 | | rng2idlring.1 |
. . . 4
⊢ 1 =
(1r‘𝐽) |
13 | | rngqiprngim.g |
. . . 4
⊢ ∼ =
(𝑅 ~QG
𝐼) |
14 | | rngqiprngim.q |
. . . 4
⊢ 𝑄 = (𝑅 /s ∼ ) |
15 | | rngqiprngim.c |
. . . 4
⊢ 𝐶 = (Base‘𝑄) |
16 | | rngqiprngim.p |
. . . 4
⊢ 𝑃 = (𝑄 ×s 𝐽) |
17 | 5, 8, 9, 10, 1, 11, 12, 13, 14, 15, 16 | rngqiprng 21191 |
. . 3
⊢ (𝜑 → 𝑃 ∈ Rng) |
18 | | rnggrp 20103 |
. . 3
⊢ (𝑃 ∈ Rng → 𝑃 ∈ Grp) |
19 | 17, 18 | syl 17 |
. 2
⊢ (𝜑 → 𝑃 ∈ Grp) |
20 | | rngqiprngim.f |
. . . 4
⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ 〈[𝑥] ∼ , ( 1 · 𝑥)〉) |
21 | 5, 8, 9, 10, 1, 11, 12, 13, 14, 15, 16, 20 | rngqiprngimf 21192 |
. . 3
⊢ (𝜑 → 𝐹:𝐵⟶(𝐶 × 𝐼)) |
22 | 5, 8, 9, 10, 1, 11, 12, 13, 14, 15, 16 | rngqipbas 21190 |
. . . 4
⊢ (𝜑 → (Base‘𝑃) = (𝐶 × 𝐼)) |
23 | 22 | feq3d 6712 |
. . 3
⊢ (𝜑 → (𝐹:𝐵⟶(Base‘𝑃) ↔ 𝐹:𝐵⟶(𝐶 × 𝐼))) |
24 | 21, 23 | mpbird 256 |
. 2
⊢ (𝜑 → 𝐹:𝐵⟶(Base‘𝑃)) |
25 | | ringrng 20226 |
. . . . . . . . 9
⊢ (𝐽 ∈ Ring → 𝐽 ∈ Rng) |
26 | 10, 25 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝐽 ∈ Rng) |
27 | 9, 26 | eqeltrrid 2833 |
. . . . . . 7
⊢ (𝜑 → (𝑅 ↾s 𝐼) ∈ Rng) |
28 | 5, 8, 27 | rng2idlnsg 21165 |
. . . . . 6
⊢ (𝜑 → 𝐼 ∈ (NrmSGrp‘𝑅)) |
29 | 28, 1, 13, 14 | ecqusaddd 19152 |
. . . . 5
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → [(𝑎(+g‘𝑅)𝑏)] ∼ = ([𝑎] ∼
(+g‘𝑄)[𝑏] ∼ )) |
30 | 5, 8, 9, 10, 1, 11, 12 | rngqiprngghmlem3 21184 |
. . . . 5
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → ( 1 · (𝑎(+g‘𝑅)𝑏)) = (( 1 · 𝑎)(+g‘𝐽)( 1 · 𝑏))) |
31 | 29, 30 | opeq12d 4884 |
. . . 4
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → 〈[(𝑎(+g‘𝑅)𝑏)] ∼ , ( 1 · (𝑎(+g‘𝑅)𝑏))〉 = 〈([𝑎] ∼
(+g‘𝑄)[𝑏] ∼ ), (( 1 · 𝑎)(+g‘𝐽)( 1 · 𝑏))〉) |
32 | | eqid 2727 |
. . . . 5
⊢
(Base‘𝑄) =
(Base‘𝑄) |
33 | | eqid 2727 |
. . . . 5
⊢
(Base‘𝐽) =
(Base‘𝐽) |
34 | 14 | ovexi 7458 |
. . . . . 6
⊢ 𝑄 ∈ V |
35 | 34 | a1i 11 |
. . . . 5
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → 𝑄 ∈ V) |
36 | 10 | adantr 479 |
. . . . 5
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → 𝐽 ∈ Ring) |
37 | | simpl 481 |
. . . . . 6
⊢ ((𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵) → 𝑎 ∈ 𝐵) |
38 | 13, 14, 1, 32 | quseccl0 19145 |
. . . . . 6
⊢ ((𝑅 ∈ Rng ∧ 𝑎 ∈ 𝐵) → [𝑎] ∼ ∈
(Base‘𝑄)) |
39 | 5, 37, 38 | syl2an 594 |
. . . . 5
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → [𝑎] ∼ ∈
(Base‘𝑄)) |
40 | 5, 8, 9, 10, 1, 11, 12 | rngqiprngghmlem1 21182 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → ( 1 · 𝑎) ∈ (Base‘𝐽)) |
41 | 40 | adantrr 715 |
. . . . 5
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → ( 1 · 𝑎) ∈ (Base‘𝐽)) |
42 | | simpr 483 |
. . . . . 6
⊢ ((𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵) → 𝑏 ∈ 𝐵) |
43 | 13, 14, 1, 32 | quseccl0 19145 |
. . . . . 6
⊢ ((𝑅 ∈ Rng ∧ 𝑏 ∈ 𝐵) → [𝑏] ∼ ∈
(Base‘𝑄)) |
44 | 5, 42, 43 | syl2an 594 |
. . . . 5
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → [𝑏] ∼ ∈
(Base‘𝑄)) |
45 | 5, 8, 9, 10, 1, 11, 12 | rngqiprngghmlem1 21182 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → ( 1 · 𝑏) ∈ (Base‘𝐽)) |
46 | 45 | adantrl 714 |
. . . . 5
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → ( 1 · 𝑏) ∈ (Base‘𝐽)) |
47 | 28, 1, 13, 14 | ecqusaddcl 19153 |
. . . . 5
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → ([𝑎] ∼
(+g‘𝑄)[𝑏] ∼ ) ∈
(Base‘𝑄)) |
48 | 5, 8, 9, 10, 1, 11, 12 | rngqiprngghmlem2 21183 |
. . . . 5
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → (( 1 · 𝑎)(+g‘𝐽)( 1 · 𝑏)) ∈ (Base‘𝐽)) |
49 | | eqid 2727 |
. . . . 5
⊢
(+g‘𝑄) = (+g‘𝑄) |
50 | | eqid 2727 |
. . . . 5
⊢
(+g‘𝐽) = (+g‘𝐽) |
51 | 16, 32, 33, 35, 36, 39, 41, 44, 46, 47, 48, 49, 50, 4 | xpsadd 17561 |
. . . 4
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → (〈[𝑎] ∼ , ( 1 · 𝑎)〉(+g‘𝑃)〈[𝑏] ∼ , ( 1 · 𝑏)〉) = 〈([𝑎] ∼
(+g‘𝑄)[𝑏] ∼ ), (( 1 · 𝑎)(+g‘𝐽)( 1 · 𝑏))〉) |
52 | 31, 51 | eqtr4d 2770 |
. . 3
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → 〈[(𝑎(+g‘𝑅)𝑏)] ∼ , ( 1 · (𝑎(+g‘𝑅)𝑏))〉 = (〈[𝑎] ∼ , ( 1 · 𝑎)〉(+g‘𝑃)〈[𝑏] ∼ , ( 1 · 𝑏)〉)) |
53 | 5 | adantr 479 |
. . . . 5
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → 𝑅 ∈ Rng) |
54 | 37 | adantl 480 |
. . . . 5
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → 𝑎 ∈ 𝐵) |
55 | 42 | adantl 480 |
. . . . 5
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → 𝑏 ∈ 𝐵) |
56 | 1, 3 | rngacl 20107 |
. . . . 5
⊢ ((𝑅 ∈ Rng ∧ 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵) → (𝑎(+g‘𝑅)𝑏) ∈ 𝐵) |
57 | 53, 54, 55, 56 | syl3anc 1368 |
. . . 4
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → (𝑎(+g‘𝑅)𝑏) ∈ 𝐵) |
58 | 5, 8, 9, 10, 1, 11, 12, 13, 14, 15, 16, 20 | rngqiprngimfv 21193 |
. . . 4
⊢ ((𝜑 ∧ (𝑎(+g‘𝑅)𝑏) ∈ 𝐵) → (𝐹‘(𝑎(+g‘𝑅)𝑏)) = 〈[(𝑎(+g‘𝑅)𝑏)] ∼ , ( 1 · (𝑎(+g‘𝑅)𝑏))〉) |
59 | 57, 58 | syldan 589 |
. . 3
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → (𝐹‘(𝑎(+g‘𝑅)𝑏)) = 〈[(𝑎(+g‘𝑅)𝑏)] ∼ , ( 1 · (𝑎(+g‘𝑅)𝑏))〉) |
60 | 5, 8, 9, 10, 1, 11, 12, 13, 14, 15, 16, 20 | rngqiprngimfv 21193 |
. . . . 5
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → (𝐹‘𝑎) = 〈[𝑎] ∼ , ( 1 · 𝑎)〉) |
61 | 60 | adantrr 715 |
. . . 4
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → (𝐹‘𝑎) = 〈[𝑎] ∼ , ( 1 · 𝑎)〉) |
62 | 5, 8, 9, 10, 1, 11, 12, 13, 14, 15, 16, 20 | rngqiprngimfv 21193 |
. . . . 5
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → (𝐹‘𝑏) = 〈[𝑏] ∼ , ( 1 · 𝑏)〉) |
63 | 62 | adantrl 714 |
. . . 4
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → (𝐹‘𝑏) = 〈[𝑏] ∼ , ( 1 · 𝑏)〉) |
64 | 61, 63 | oveq12d 7442 |
. . 3
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → ((𝐹‘𝑎)(+g‘𝑃)(𝐹‘𝑏)) = (〈[𝑎] ∼ , ( 1 · 𝑎)〉(+g‘𝑃)〈[𝑏] ∼ , ( 1 · 𝑏)〉)) |
65 | 52, 59, 64 | 3eqtr4d 2777 |
. 2
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → (𝐹‘(𝑎(+g‘𝑅)𝑏)) = ((𝐹‘𝑎)(+g‘𝑃)(𝐹‘𝑏))) |
66 | 1, 2, 3, 4, 7, 19,
24, 65 | isghmd 19184 |
1
⊢ (𝜑 → 𝐹 ∈ (𝑅 GrpHom 𝑃)) |