![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rngqiprng | Structured version Visualization version GIF version |
Description: The product of the quotient with a two-sided ideal and the two-sided ideal is a non-unital ring. (Contributed by AV, 23-Feb-2025.) |
Ref | Expression |
---|---|
rng2idlring.r | ⊢ (𝜑 → 𝑅 ∈ Rng) |
rng2idlring.i | ⊢ (𝜑 → 𝐼 ∈ (2Ideal‘𝑅)) |
rng2idlring.j | ⊢ 𝐽 = (𝑅 ↾s 𝐼) |
rng2idlring.u | ⊢ (𝜑 → 𝐽 ∈ Ring) |
rng2idlring.b | ⊢ 𝐵 = (Base‘𝑅) |
rng2idlring.t | ⊢ · = (.r‘𝑅) |
rng2idlring.1 | ⊢ 1 = (1r‘𝐽) |
rngqiprngim.g | ⊢ ∼ = (𝑅 ~QG 𝐼) |
rngqiprngim.q | ⊢ 𝑄 = (𝑅 /s ∼ ) |
rngqiprngim.c | ⊢ 𝐶 = (Base‘𝑄) |
rngqiprngim.p | ⊢ 𝑃 = (𝑄 ×s 𝐽) |
Ref | Expression |
---|---|
rngqiprng | ⊢ (𝜑 → 𝑃 ∈ Rng) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rngqiprngim.p | . 2 ⊢ 𝑃 = (𝑄 ×s 𝐽) | |
2 | rng2idlring.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ Rng) | |
3 | rng2idlring.i | . . 3 ⊢ (𝜑 → 𝐼 ∈ (2Ideal‘𝑅)) | |
4 | rng2idlring.j | . . . . . 6 ⊢ 𝐽 = (𝑅 ↾s 𝐼) | |
5 | rng2idlring.u | . . . . . . 7 ⊢ (𝜑 → 𝐽 ∈ Ring) | |
6 | ringrng 20221 | . . . . . . 7 ⊢ (𝐽 ∈ Ring → 𝐽 ∈ Rng) | |
7 | 5, 6 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝐽 ∈ Rng) |
8 | 4, 7 | eqeltrrid 2834 | . . . . 5 ⊢ (𝜑 → (𝑅 ↾s 𝐼) ∈ Rng) |
9 | 2, 3, 8 | rng2idlsubrng 21159 | . . . 4 ⊢ (𝜑 → 𝐼 ∈ (SubRng‘𝑅)) |
10 | subrngsubg 20489 | . . . 4 ⊢ (𝐼 ∈ (SubRng‘𝑅) → 𝐼 ∈ (SubGrp‘𝑅)) | |
11 | 9, 10 | syl 17 | . . 3 ⊢ (𝜑 → 𝐼 ∈ (SubGrp‘𝑅)) |
12 | rngqiprngim.q | . . . . 5 ⊢ 𝑄 = (𝑅 /s ∼ ) | |
13 | rngqiprngim.g | . . . . . 6 ⊢ ∼ = (𝑅 ~QG 𝐼) | |
14 | 13 | oveq2i 7431 | . . . . 5 ⊢ (𝑅 /s ∼ ) = (𝑅 /s (𝑅 ~QG 𝐼)) |
15 | 12, 14 | eqtri 2756 | . . . 4 ⊢ 𝑄 = (𝑅 /s (𝑅 ~QG 𝐼)) |
16 | eqid 2728 | . . . 4 ⊢ (2Ideal‘𝑅) = (2Ideal‘𝑅) | |
17 | 15, 16 | qus2idrng 21167 | . . 3 ⊢ ((𝑅 ∈ Rng ∧ 𝐼 ∈ (2Ideal‘𝑅) ∧ 𝐼 ∈ (SubGrp‘𝑅)) → 𝑄 ∈ Rng) |
18 | 2, 3, 11, 17 | syl3anc 1369 | . 2 ⊢ (𝜑 → 𝑄 ∈ Rng) |
19 | 1, 18, 7 | xpsrngd 20119 | 1 ⊢ (𝜑 → 𝑃 ∈ Rng) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∈ wcel 2099 ‘cfv 6548 (class class class)co 7420 Basecbs 17180 ↾s cress 17209 .rcmulr 17234 /s cqus 17487 ×s cxps 17488 SubGrpcsubg 19075 ~QG cqg 19077 Rngcrng 20092 1rcur 20121 Ringcrg 20173 SubRngcsubrng 20482 2Idealc2idl 21143 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-cnex 11195 ax-resscn 11196 ax-1cn 11197 ax-icn 11198 ax-addcl 11199 ax-addrcl 11200 ax-mulcl 11201 ax-mulrcl 11202 ax-mulcom 11203 ax-addass 11204 ax-mulass 11205 ax-distr 11206 ax-i2m1 11207 ax-1ne0 11208 ax-1rid 11209 ax-rnegex 11210 ax-rrecex 11211 ax-cnre 11212 ax-pre-lttri 11213 ax-pre-lttrn 11214 ax-pre-ltadd 11215 ax-pre-mulgt0 11216 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3373 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-tp 4634 df-op 4636 df-uni 4909 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-riota 7376 df-ov 7423 df-oprab 7424 df-mpo 7425 df-om 7871 df-1st 7993 df-2nd 7994 df-tpos 8232 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-2o 8488 df-er 8725 df-ec 8727 df-qs 8731 df-map 8847 df-ixp 8917 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-sup 9466 df-inf 9467 df-pnf 11281 df-mnf 11282 df-xr 11283 df-ltxr 11284 df-le 11285 df-sub 11477 df-neg 11478 df-nn 12244 df-2 12306 df-3 12307 df-4 12308 df-5 12309 df-6 12310 df-7 12311 df-8 12312 df-9 12313 df-n0 12504 df-z 12590 df-dec 12709 df-uz 12854 df-fz 13518 df-struct 17116 df-sets 17133 df-slot 17151 df-ndx 17163 df-base 17181 df-ress 17210 df-plusg 17246 df-mulr 17247 df-sca 17249 df-vsca 17250 df-ip 17251 df-tset 17252 df-ple 17253 df-ds 17255 df-hom 17257 df-cco 17258 df-0g 17423 df-prds 17429 df-imas 17490 df-qus 17491 df-xps 17492 df-mgm 18600 df-sgrp 18679 df-mnd 18695 df-grp 18893 df-minusg 18894 df-sbg 18895 df-subg 19078 df-nsg 19079 df-eqg 19080 df-cmn 19737 df-abl 19738 df-mgp 20075 df-rng 20093 df-ur 20122 df-ring 20175 df-oppr 20273 df-subrng 20483 df-lss 20816 df-sra 21058 df-rgmod 21059 df-lidl 21104 df-2idl 21144 |
This theorem is referenced by: rngqiprngghm 21189 rngqiprngho 21193 |
Copyright terms: Public domain | W3C validator |