MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rng2idlsubrng Structured version   Visualization version   GIF version

Theorem rng2idlsubrng 21166
Description: A two-sided ideal of a non-unital ring which is a non-unital ring is a subring of the ring. (Contributed by AV, 20-Feb-2025.) (Revised by AV, 11-Mar-2025.)
Hypotheses
Ref Expression
rng2idlsubrng.r (𝜑𝑅 ∈ Rng)
rng2idlsubrng.i (𝜑𝐼 ∈ (2Ideal‘𝑅))
rng2idlsubrng.u (𝜑 → (𝑅s 𝐼) ∈ Rng)
Assertion
Ref Expression
rng2idlsubrng (𝜑𝐼 ∈ (SubRng‘𝑅))

Proof of Theorem rng2idlsubrng
StepHypRef Expression
1 rng2idlsubrng.r . 2 (𝜑𝑅 ∈ Rng)
2 rng2idlsubrng.u . 2 (𝜑 → (𝑅s 𝐼) ∈ Rng)
3 rng2idlsubrng.i . . 3 (𝜑𝐼 ∈ (2Ideal‘𝑅))
4 eqid 2728 . . . 4 (Base‘𝑅) = (Base‘𝑅)
5 eqid 2728 . . . 4 (2Ideal‘𝑅) = (2Ideal‘𝑅)
64, 52idlss 21163 . . 3 (𝐼 ∈ (2Ideal‘𝑅) → 𝐼 ⊆ (Base‘𝑅))
73, 6syl 17 . 2 (𝜑𝐼 ⊆ (Base‘𝑅))
84issubrng 20491 . 2 (𝐼 ∈ (SubRng‘𝑅) ↔ (𝑅 ∈ Rng ∧ (𝑅s 𝐼) ∈ Rng ∧ 𝐼 ⊆ (Base‘𝑅)))
91, 2, 7, 8syl3anbrc 1340 1 (𝜑𝐼 ∈ (SubRng‘𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2098  wss 3949  cfv 6553  (class class class)co 7426  Basecbs 17187  s cress 17216  Rngcrng 20099  SubRngcsubrng 20489  2Idealc2idl 21150
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-rep 5289  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11202  ax-resscn 11203  ax-1cn 11204  ax-icn 11205  ax-addcl 11206  ax-addrcl 11207  ax-mulcl 11208  ax-mulrcl 11209  ax-mulcom 11210  ax-addass 11211  ax-mulass 11212  ax-distr 11213  ax-i2m1 11214  ax-1ne0 11215  ax-1rid 11216  ax-rnegex 11217  ax-rrecex 11218  ax-cnre 11219  ax-pre-lttri 11220  ax-pre-lttrn 11221  ax-pre-ltadd 11222  ax-pre-mulgt0 11223
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6310  df-ord 6377  df-on 6378  df-lim 6379  df-suc 6380  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-om 7877  df-2nd 8000  df-frecs 8293  df-wrecs 8324  df-recs 8398  df-rdg 8437  df-er 8731  df-en 8971  df-dom 8972  df-sdom 8973  df-pnf 11288  df-mnf 11289  df-xr 11290  df-ltxr 11291  df-le 11292  df-sub 11484  df-neg 11485  df-nn 12251  df-2 12313  df-3 12314  df-4 12315  df-5 12316  df-6 12317  df-7 12318  df-8 12319  df-sets 17140  df-slot 17158  df-ndx 17170  df-base 17188  df-sca 17256  df-vsca 17257  df-ip 17258  df-subrng 20490  df-lss 20823  df-sra 21065  df-rgmod 21066  df-lidl 21111  df-2idl 21151
This theorem is referenced by:  rng2idlnsg  21167  rng2idl0  21168  rng2idlsubgsubrng  21169  rngqiprnglinlem2  21189  rngqiprng  21193  rng2idl1cntr  21202
  Copyright terms: Public domain W3C validator
OSZAR »