![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > znle | Structured version Visualization version GIF version |
Description: The value of the ℤ/nℤ structure. It is defined as the quotient ring ℤ / 𝑛ℤ, with an "artificial" ordering added to make it a Toset. (In other words, ℤ/nℤ is a ring with an order , but it is not an ordered ring , which as a term implies that the order is compatible with the ring operations in some way.) (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by AV, 13-Jun-2019.) |
Ref | Expression |
---|---|
znval.s | ⊢ 𝑆 = (RSpan‘ℤring) |
znval.u | ⊢ 𝑈 = (ℤring /s (ℤring ~QG (𝑆‘{𝑁}))) |
znval.y | ⊢ 𝑌 = (ℤ/nℤ‘𝑁) |
znval.f | ⊢ 𝐹 = ((ℤRHom‘𝑈) ↾ 𝑊) |
znval.w | ⊢ 𝑊 = if(𝑁 = 0, ℤ, (0..^𝑁)) |
znle.l | ⊢ ≤ = (le‘𝑌) |
Ref | Expression |
---|---|
znle | ⊢ (𝑁 ∈ ℕ0 → ≤ = ((𝐹 ∘ ≤ ) ∘ ◡𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | znval.s | . . . 4 ⊢ 𝑆 = (RSpan‘ℤring) | |
2 | znval.u | . . . 4 ⊢ 𝑈 = (ℤring /s (ℤring ~QG (𝑆‘{𝑁}))) | |
3 | znval.y | . . . 4 ⊢ 𝑌 = (ℤ/nℤ‘𝑁) | |
4 | znval.f | . . . 4 ⊢ 𝐹 = ((ℤRHom‘𝑈) ↾ 𝑊) | |
5 | znval.w | . . . 4 ⊢ 𝑊 = if(𝑁 = 0, ℤ, (0..^𝑁)) | |
6 | eqid 2728 | . . . 4 ⊢ ((𝐹 ∘ ≤ ) ∘ ◡𝐹) = ((𝐹 ∘ ≤ ) ∘ ◡𝐹) | |
7 | 1, 2, 3, 4, 5, 6 | znval 21458 | . . 3 ⊢ (𝑁 ∈ ℕ0 → 𝑌 = (𝑈 sSet 〈(le‘ndx), ((𝐹 ∘ ≤ ) ∘ ◡𝐹)〉)) |
8 | 7 | fveq2d 6895 | . 2 ⊢ (𝑁 ∈ ℕ0 → (le‘𝑌) = (le‘(𝑈 sSet 〈(le‘ndx), ((𝐹 ∘ ≤ ) ∘ ◡𝐹)〉))) |
9 | znle.l | . 2 ⊢ ≤ = (le‘𝑌) | |
10 | 2 | ovexi 7448 | . . 3 ⊢ 𝑈 ∈ V |
11 | fvex 6904 | . . . . . . 7 ⊢ (ℤRHom‘𝑈) ∈ V | |
12 | 11 | resex 6027 | . . . . . 6 ⊢ ((ℤRHom‘𝑈) ↾ 𝑊) ∈ V |
13 | 4, 12 | eqeltri 2825 | . . . . 5 ⊢ 𝐹 ∈ V |
14 | xrex 12995 | . . . . . . 7 ⊢ ℝ* ∈ V | |
15 | 14, 14 | xpex 7749 | . . . . . 6 ⊢ (ℝ* × ℝ*) ∈ V |
16 | lerelxr 11301 | . . . . . 6 ⊢ ≤ ⊆ (ℝ* × ℝ*) | |
17 | 15, 16 | ssexi 5316 | . . . . 5 ⊢ ≤ ∈ V |
18 | 13, 17 | coex 7932 | . . . 4 ⊢ (𝐹 ∘ ≤ ) ∈ V |
19 | 13 | cnvex 7927 | . . . 4 ⊢ ◡𝐹 ∈ V |
20 | 18, 19 | coex 7932 | . . 3 ⊢ ((𝐹 ∘ ≤ ) ∘ ◡𝐹) ∈ V |
21 | pleid 17341 | . . . 4 ⊢ le = Slot (le‘ndx) | |
22 | 21 | setsid 17170 | . . 3 ⊢ ((𝑈 ∈ V ∧ ((𝐹 ∘ ≤ ) ∘ ◡𝐹) ∈ V) → ((𝐹 ∘ ≤ ) ∘ ◡𝐹) = (le‘(𝑈 sSet 〈(le‘ndx), ((𝐹 ∘ ≤ ) ∘ ◡𝐹)〉))) |
23 | 10, 20, 22 | mp2an 691 | . 2 ⊢ ((𝐹 ∘ ≤ ) ∘ ◡𝐹) = (le‘(𝑈 sSet 〈(le‘ndx), ((𝐹 ∘ ≤ ) ∘ ◡𝐹)〉)) |
24 | 8, 9, 23 | 3eqtr4g 2793 | 1 ⊢ (𝑁 ∈ ℕ0 → ≤ = ((𝐹 ∘ ≤ ) ∘ ◡𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∈ wcel 2099 Vcvv 3470 ifcif 4524 {csn 4624 〈cop 4630 × cxp 5670 ◡ccnv 5671 ↾ cres 5674 ∘ ccom 5676 ‘cfv 6542 (class class class)co 7414 0cc0 11132 ℝ*cxr 11271 ≤ cle 11273 ℕ0cn0 12496 ℤcz 12582 ..^cfzo 13653 sSet csts 17125 ndxcnx 17155 lecple 17233 /s cqus 17480 ~QG cqg 19070 RSpancrsp 21096 ℤringczring 21365 ℤRHomczrh 21418 ℤ/nℤczn 21421 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-cnex 11188 ax-resscn 11189 ax-1cn 11190 ax-icn 11191 ax-addcl 11192 ax-addrcl 11193 ax-mulcl 11194 ax-mulrcl 11195 ax-mulcom 11196 ax-addass 11197 ax-mulass 11198 ax-distr 11199 ax-i2m1 11200 ax-1ne0 11201 ax-1rid 11202 ax-rnegex 11203 ax-rrecex 11204 ax-cnre 11205 ax-pre-lttri 11206 ax-pre-lttrn 11207 ax-pre-ltadd 11208 ax-pre-mulgt0 11209 ax-addf 11211 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-rmo 3372 df-reu 3373 df-rab 3429 df-v 3472 df-sbc 3776 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3964 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-tp 4629 df-op 4631 df-uni 4904 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7865 df-1st 7987 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8718 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-pnf 11274 df-mnf 11275 df-xr 11276 df-ltxr 11277 df-le 11278 df-sub 11470 df-neg 11471 df-nn 12237 df-2 12299 df-3 12300 df-4 12301 df-5 12302 df-6 12303 df-7 12304 df-8 12305 df-9 12306 df-n0 12497 df-z 12583 df-dec 12702 df-uz 12847 df-fz 13511 df-struct 17109 df-sets 17126 df-slot 17144 df-ndx 17156 df-base 17174 df-ress 17203 df-plusg 17239 df-mulr 17240 df-starv 17241 df-tset 17245 df-ple 17246 df-ds 17248 df-unif 17249 df-0g 17416 df-mgm 18593 df-sgrp 18672 df-mnd 18688 df-grp 18886 df-minusg 18887 df-subg 19071 df-cmn 19730 df-abl 19731 df-mgp 20068 df-rng 20086 df-ur 20115 df-ring 20168 df-cring 20169 df-subrng 20476 df-subrg 20501 df-cnfld 21273 df-zring 21366 df-zn 21425 |
This theorem is referenced by: znval2 21460 znle2 21480 |
Copyright terms: Public domain | W3C validator |