MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  znle Structured version   Visualization version   GIF version

Theorem znle 21459
Description: The value of the ℤ/n structure. It is defined as the quotient ring ℤ / 𝑛, with an "artificial" ordering added to make it a Toset. (In other words, ℤ/n is a ring with an order , but it is not an ordered ring , which as a term implies that the order is compatible with the ring operations in some way.) (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by AV, 13-Jun-2019.)
Hypotheses
Ref Expression
znval.s 𝑆 = (RSpan‘ℤring)
znval.u 𝑈 = (ℤring /s (ℤring ~QG (𝑆‘{𝑁})))
znval.y 𝑌 = (ℤ/nℤ‘𝑁)
znval.f 𝐹 = ((ℤRHom‘𝑈) ↾ 𝑊)
znval.w 𝑊 = if(𝑁 = 0, ℤ, (0..^𝑁))
znle.l = (le‘𝑌)
Assertion
Ref Expression
znle (𝑁 ∈ ℕ0 = ((𝐹 ∘ ≤ ) ∘ 𝐹))

Proof of Theorem znle
StepHypRef Expression
1 znval.s . . . 4 𝑆 = (RSpan‘ℤring)
2 znval.u . . . 4 𝑈 = (ℤring /s (ℤring ~QG (𝑆‘{𝑁})))
3 znval.y . . . 4 𝑌 = (ℤ/nℤ‘𝑁)
4 znval.f . . . 4 𝐹 = ((ℤRHom‘𝑈) ↾ 𝑊)
5 znval.w . . . 4 𝑊 = if(𝑁 = 0, ℤ, (0..^𝑁))
6 eqid 2728 . . . 4 ((𝐹 ∘ ≤ ) ∘ 𝐹) = ((𝐹 ∘ ≤ ) ∘ 𝐹)
71, 2, 3, 4, 5, 6znval 21458 . . 3 (𝑁 ∈ ℕ0𝑌 = (𝑈 sSet ⟨(le‘ndx), ((𝐹 ∘ ≤ ) ∘ 𝐹)⟩))
87fveq2d 6895 . 2 (𝑁 ∈ ℕ0 → (le‘𝑌) = (le‘(𝑈 sSet ⟨(le‘ndx), ((𝐹 ∘ ≤ ) ∘ 𝐹)⟩)))
9 znle.l . 2 = (le‘𝑌)
102ovexi 7448 . . 3 𝑈 ∈ V
11 fvex 6904 . . . . . . 7 (ℤRHom‘𝑈) ∈ V
1211resex 6027 . . . . . 6 ((ℤRHom‘𝑈) ↾ 𝑊) ∈ V
134, 12eqeltri 2825 . . . . 5 𝐹 ∈ V
14 xrex 12995 . . . . . . 7 * ∈ V
1514, 14xpex 7749 . . . . . 6 (ℝ* × ℝ*) ∈ V
16 lerelxr 11301 . . . . . 6 ≤ ⊆ (ℝ* × ℝ*)
1715, 16ssexi 5316 . . . . 5 ≤ ∈ V
1813, 17coex 7932 . . . 4 (𝐹 ∘ ≤ ) ∈ V
1913cnvex 7927 . . . 4 𝐹 ∈ V
2018, 19coex 7932 . . 3 ((𝐹 ∘ ≤ ) ∘ 𝐹) ∈ V
21 pleid 17341 . . . 4 le = Slot (le‘ndx)
2221setsid 17170 . . 3 ((𝑈 ∈ V ∧ ((𝐹 ∘ ≤ ) ∘ 𝐹) ∈ V) → ((𝐹 ∘ ≤ ) ∘ 𝐹) = (le‘(𝑈 sSet ⟨(le‘ndx), ((𝐹 ∘ ≤ ) ∘ 𝐹)⟩)))
2310, 20, 22mp2an 691 . 2 ((𝐹 ∘ ≤ ) ∘ 𝐹) = (le‘(𝑈 sSet ⟨(le‘ndx), ((𝐹 ∘ ≤ ) ∘ 𝐹)⟩))
248, 9, 233eqtr4g 2793 1 (𝑁 ∈ ℕ0 = ((𝐹 ∘ ≤ ) ∘ 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1534  wcel 2099  Vcvv 3470  ifcif 4524  {csn 4624  cop 4630   × cxp 5670  ccnv 5671  cres 5674  ccom 5676  cfv 6542  (class class class)co 7414  0cc0 11132  *cxr 11271  cle 11273  0cn0 12496  cz 12582  ..^cfzo 13653   sSet csts 17125  ndxcnx 17155  lecple 17233   /s cqus 17480   ~QG cqg 19070  RSpancrsp 21096  ringczring 21365  ℤRHomczrh 21418  ℤ/nczn 21421
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-cnex 11188  ax-resscn 11189  ax-1cn 11190  ax-icn 11191  ax-addcl 11192  ax-addrcl 11193  ax-mulcl 11194  ax-mulrcl 11195  ax-mulcom 11196  ax-addass 11197  ax-mulass 11198  ax-distr 11199  ax-i2m1 11200  ax-1ne0 11201  ax-1rid 11202  ax-rnegex 11203  ax-rrecex 11204  ax-cnre 11205  ax-pre-lttri 11206  ax-pre-lttrn 11207  ax-pre-ltadd 11208  ax-pre-mulgt0 11209  ax-addf 11211
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-rmo 3372  df-reu 3373  df-rab 3429  df-v 3472  df-sbc 3776  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3964  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-tp 4629  df-op 4631  df-uni 4904  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7865  df-1st 7987  df-2nd 7988  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8718  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-pnf 11274  df-mnf 11275  df-xr 11276  df-ltxr 11277  df-le 11278  df-sub 11470  df-neg 11471  df-nn 12237  df-2 12299  df-3 12300  df-4 12301  df-5 12302  df-6 12303  df-7 12304  df-8 12305  df-9 12306  df-n0 12497  df-z 12583  df-dec 12702  df-uz 12847  df-fz 13511  df-struct 17109  df-sets 17126  df-slot 17144  df-ndx 17156  df-base 17174  df-ress 17203  df-plusg 17239  df-mulr 17240  df-starv 17241  df-tset 17245  df-ple 17246  df-ds 17248  df-unif 17249  df-0g 17416  df-mgm 18593  df-sgrp 18672  df-mnd 18688  df-grp 18886  df-minusg 18887  df-subg 19071  df-cmn 19730  df-abl 19731  df-mgp 20068  df-rng 20086  df-ur 20115  df-ring 20168  df-cring 20169  df-subrng 20476  df-subrg 20501  df-cnfld 21273  df-zring 21366  df-zn 21425
This theorem is referenced by:  znval2  21460  znle2  21480
  Copyright terms: Public domain W3C validator
OSZAR »