Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fresin2 Structured version   Visualization version   GIF version

Theorem fresin2 44545
Description: Restriction of a function with respect to the intersection with its domain. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Assertion
Ref Expression
fresin2 (𝐹:𝐴𝐵 → (𝐹 ↾ (𝐶𝐴)) = (𝐹𝐶))

Proof of Theorem fresin2
StepHypRef Expression
1 fdm 6731 . . . . 5 (𝐹:𝐴𝐵 → dom 𝐹 = 𝐴)
21eqcomd 2734 . . . 4 (𝐹:𝐴𝐵𝐴 = dom 𝐹)
32ineq2d 4212 . . 3 (𝐹:𝐴𝐵 → (𝐶𝐴) = (𝐶 ∩ dom 𝐹))
43reseq2d 5985 . 2 (𝐹:𝐴𝐵 → (𝐹 ↾ (𝐶𝐴)) = (𝐹 ↾ (𝐶 ∩ dom 𝐹)))
5 frel 6727 . . 3 (𝐹:𝐴𝐵 → Rel 𝐹)
6 resindm 6034 . . 3 (Rel 𝐹 → (𝐹 ↾ (𝐶 ∩ dom 𝐹)) = (𝐹𝐶))
75, 6syl 17 . 2 (𝐹:𝐴𝐵 → (𝐹 ↾ (𝐶 ∩ dom 𝐹)) = (𝐹𝐶))
84, 7eqtrd 2768 1 (𝐹:𝐴𝐵 → (𝐹 ↾ (𝐶𝐴)) = (𝐹𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1534  cin 3946  dom cdm 5678  cres 5680  Rel wrel 5683  wf 6544
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2699  ax-sep 5299  ax-nul 5306  ax-pr 5429
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-sb 2061  df-clab 2706  df-cleq 2720  df-clel 2806  df-ral 3059  df-rex 3068  df-rab 3430  df-v 3473  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-br 5149  df-opab 5211  df-xp 5684  df-rel 5685  df-dm 5688  df-res 5690  df-fun 6550  df-fn 6551  df-f 6552
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator
OSZAR »