![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > frirr | Structured version Visualization version GIF version |
Description: A well-founded relation is irreflexive. Special case of Proposition 6.23 of [TakeutiZaring] p. 30. (Contributed by NM, 2-Jan-1994.) (Revised by Mario Carneiro, 22-Jun-2015.) |
Ref | Expression |
---|---|
frirr | ⊢ ((𝑅 Fr 𝐴 ∧ 𝐵 ∈ 𝐴) → ¬ 𝐵𝑅𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 482 | . . 3 ⊢ ((𝑅 Fr 𝐴 ∧ 𝐵 ∈ 𝐴) → 𝑅 Fr 𝐴) | |
2 | snssi 4812 | . . . 4 ⊢ (𝐵 ∈ 𝐴 → {𝐵} ⊆ 𝐴) | |
3 | 2 | adantl 481 | . . 3 ⊢ ((𝑅 Fr 𝐴 ∧ 𝐵 ∈ 𝐴) → {𝐵} ⊆ 𝐴) |
4 | snnzg 4779 | . . . 4 ⊢ (𝐵 ∈ 𝐴 → {𝐵} ≠ ∅) | |
5 | 4 | adantl 481 | . . 3 ⊢ ((𝑅 Fr 𝐴 ∧ 𝐵 ∈ 𝐴) → {𝐵} ≠ ∅) |
6 | snex 5433 | . . . 4 ⊢ {𝐵} ∈ V | |
7 | 6 | frc 5644 | . . 3 ⊢ ((𝑅 Fr 𝐴 ∧ {𝐵} ⊆ 𝐴 ∧ {𝐵} ≠ ∅) → ∃𝑦 ∈ {𝐵} {𝑥 ∈ {𝐵} ∣ 𝑥𝑅𝑦} = ∅) |
8 | 1, 3, 5, 7 | syl3anc 1369 | . 2 ⊢ ((𝑅 Fr 𝐴 ∧ 𝐵 ∈ 𝐴) → ∃𝑦 ∈ {𝐵} {𝑥 ∈ {𝐵} ∣ 𝑥𝑅𝑦} = ∅) |
9 | breq1 5151 | . . . . . . 7 ⊢ (𝑥 = 𝑧 → (𝑥𝑅𝑦 ↔ 𝑧𝑅𝑦)) | |
10 | 9 | rabeq0w 4384 | . . . . . 6 ⊢ ({𝑥 ∈ {𝐵} ∣ 𝑥𝑅𝑦} = ∅ ↔ ∀𝑧 ∈ {𝐵} ¬ 𝑧𝑅𝑦) |
11 | breq2 5152 | . . . . . . . 8 ⊢ (𝑦 = 𝐵 → (𝑧𝑅𝑦 ↔ 𝑧𝑅𝐵)) | |
12 | 11 | notbid 318 | . . . . . . 7 ⊢ (𝑦 = 𝐵 → (¬ 𝑧𝑅𝑦 ↔ ¬ 𝑧𝑅𝐵)) |
13 | 12 | ralbidv 3174 | . . . . . 6 ⊢ (𝑦 = 𝐵 → (∀𝑧 ∈ {𝐵} ¬ 𝑧𝑅𝑦 ↔ ∀𝑧 ∈ {𝐵} ¬ 𝑧𝑅𝐵)) |
14 | 10, 13 | bitrid 283 | . . . . 5 ⊢ (𝑦 = 𝐵 → ({𝑥 ∈ {𝐵} ∣ 𝑥𝑅𝑦} = ∅ ↔ ∀𝑧 ∈ {𝐵} ¬ 𝑧𝑅𝐵)) |
15 | 14 | rexsng 4679 | . . . 4 ⊢ (𝐵 ∈ 𝐴 → (∃𝑦 ∈ {𝐵} {𝑥 ∈ {𝐵} ∣ 𝑥𝑅𝑦} = ∅ ↔ ∀𝑧 ∈ {𝐵} ¬ 𝑧𝑅𝐵)) |
16 | breq1 5151 | . . . . . 6 ⊢ (𝑧 = 𝐵 → (𝑧𝑅𝐵 ↔ 𝐵𝑅𝐵)) | |
17 | 16 | notbid 318 | . . . . 5 ⊢ (𝑧 = 𝐵 → (¬ 𝑧𝑅𝐵 ↔ ¬ 𝐵𝑅𝐵)) |
18 | 17 | ralsng 4678 | . . . 4 ⊢ (𝐵 ∈ 𝐴 → (∀𝑧 ∈ {𝐵} ¬ 𝑧𝑅𝐵 ↔ ¬ 𝐵𝑅𝐵)) |
19 | 15, 18 | bitrd 279 | . . 3 ⊢ (𝐵 ∈ 𝐴 → (∃𝑦 ∈ {𝐵} {𝑥 ∈ {𝐵} ∣ 𝑥𝑅𝑦} = ∅ ↔ ¬ 𝐵𝑅𝐵)) |
20 | 19 | adantl 481 | . 2 ⊢ ((𝑅 Fr 𝐴 ∧ 𝐵 ∈ 𝐴) → (∃𝑦 ∈ {𝐵} {𝑥 ∈ {𝐵} ∣ 𝑥𝑅𝑦} = ∅ ↔ ¬ 𝐵𝑅𝐵)) |
21 | 8, 20 | mpbid 231 | 1 ⊢ ((𝑅 Fr 𝐴 ∧ 𝐵 ∈ 𝐴) → ¬ 𝐵𝑅𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1534 ∈ wcel 2099 ≠ wne 2937 ∀wral 3058 ∃wrex 3067 {crab 3429 ⊆ wss 3947 ∅c0 4323 {csn 4629 class class class wbr 5148 Fr wfr 5630 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pr 5429 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3430 df-v 3473 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-br 5149 df-fr 5633 |
This theorem is referenced by: efrirr 5659 predfrirr 6340 dfwe2 7776 bnj1417 34672 efrunt 35307 ifr0 43887 |
Copyright terms: Public domain | W3C validator |