![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > funimaexg | Structured version Visualization version GIF version |
Description: Axiom of Replacement using abbreviations. Axiom 39(vi) of [Quine] p. 284. Compare Exercise 9 of [TakeutiZaring] p. 29. (Contributed by NM, 10-Sep-2006.) Shorten proof and avoid ax-10 2130, ax-12 2167. (Revised by SN, 19-Dec-2024.) |
Ref | Expression |
---|---|
funimaexg | ⊢ ((Fun 𝐴 ∧ 𝐵 ∈ 𝐶) → (𝐴 “ 𝐵) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dffun6 6567 | . . . 4 ⊢ (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥∃*𝑦 𝑥𝐴𝑦)) | |
2 | 1 | simprbi 495 | . . 3 ⊢ (Fun 𝐴 → ∀𝑥∃*𝑦 𝑥𝐴𝑦) |
3 | dfima2 6071 | . . . 4 ⊢ (𝐴 “ 𝐵) = {𝑦 ∣ ∃𝑥 ∈ 𝐵 𝑥𝐴𝑦} | |
4 | axrep6g 5298 | . . . 4 ⊢ ((𝐵 ∈ 𝐶 ∧ ∀𝑥∃*𝑦 𝑥𝐴𝑦) → {𝑦 ∣ ∃𝑥 ∈ 𝐵 𝑥𝐴𝑦} ∈ V) | |
5 | 3, 4 | eqeltrid 2830 | . . 3 ⊢ ((𝐵 ∈ 𝐶 ∧ ∀𝑥∃*𝑦 𝑥𝐴𝑦) → (𝐴 “ 𝐵) ∈ V) |
6 | 2, 5 | sylan2 591 | . 2 ⊢ ((𝐵 ∈ 𝐶 ∧ Fun 𝐴) → (𝐴 “ 𝐵) ∈ V) |
7 | 6 | ancoms 457 | 1 ⊢ ((Fun 𝐴 ∧ 𝐵 ∈ 𝐶) → (𝐴 “ 𝐵) ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∀wal 1532 ∈ wcel 2099 ∃*wmo 2527 {cab 2703 ∃wrex 3060 Vcvv 3462 class class class wbr 5153 “ cima 5685 Rel wrel 5687 Fun wfun 6548 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2697 ax-rep 5290 ax-sep 5304 ax-nul 5311 ax-pr 5433 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-mo 2529 df-clab 2704 df-cleq 2718 df-clel 2803 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3464 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4326 df-if 4534 df-sn 4634 df-pr 4636 df-op 4640 df-br 5154 df-opab 5216 df-id 5580 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-fun 6556 |
This theorem is referenced by: funimaex 6647 resfunexg 7232 resfunexgALT 7961 fnexALT 7964 naddcllem 8706 naddunif 8723 wdomimag 9630 carduniima 10139 dfac12lem2 10187 ttukeylem3 10554 nnexALT 12266 seqex 14023 fbasrn 23879 elfm3 23945 bdayimaon 27723 nosupno 27733 noinfno 27748 noeta2 27814 etasslt2 27844 scutbdaybnd2lim 27847 madeval 27876 oldval 27878 negsunif 28064 fnimafnex 43090 fundcmpsurinjlem3 46955 fundcmpsurbijinjpreimafv 46962 fundcmpsurbijinj 46965 fundcmpsurinjALT 46967 uspgrimprop 47435 grimuhgr 47440 |
Copyright terms: Public domain | W3C validator |