MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funimaexg Structured version   Visualization version   GIF version

Theorem funimaexg 6645
Description: Axiom of Replacement using abbreviations. Axiom 39(vi) of [Quine] p. 284. Compare Exercise 9 of [TakeutiZaring] p. 29. (Contributed by NM, 10-Sep-2006.) Shorten proof and avoid ax-10 2130, ax-12 2167. (Revised by SN, 19-Dec-2024.)
Assertion
Ref Expression
funimaexg ((Fun 𝐴𝐵𝐶) → (𝐴𝐵) ∈ V)

Proof of Theorem funimaexg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dffun6 6567 . . . 4 (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥∃*𝑦 𝑥𝐴𝑦))
21simprbi 495 . . 3 (Fun 𝐴 → ∀𝑥∃*𝑦 𝑥𝐴𝑦)
3 dfima2 6071 . . . 4 (𝐴𝐵) = {𝑦 ∣ ∃𝑥𝐵 𝑥𝐴𝑦}
4 axrep6g 5298 . . . 4 ((𝐵𝐶 ∧ ∀𝑥∃*𝑦 𝑥𝐴𝑦) → {𝑦 ∣ ∃𝑥𝐵 𝑥𝐴𝑦} ∈ V)
53, 4eqeltrid 2830 . . 3 ((𝐵𝐶 ∧ ∀𝑥∃*𝑦 𝑥𝐴𝑦) → (𝐴𝐵) ∈ V)
62, 5sylan2 591 . 2 ((𝐵𝐶 ∧ Fun 𝐴) → (𝐴𝐵) ∈ V)
76ancoms 457 1 ((Fun 𝐴𝐵𝐶) → (𝐴𝐵) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  wal 1532  wcel 2099  ∃*wmo 2527  {cab 2703  wrex 3060  Vcvv 3462   class class class wbr 5153  cima 5685  Rel wrel 5687  Fun wfun 6548
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2697  ax-rep 5290  ax-sep 5304  ax-nul 5311  ax-pr 5433
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-sb 2061  df-mo 2529  df-clab 2704  df-cleq 2718  df-clel 2803  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3464  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4326  df-if 4534  df-sn 4634  df-pr 4636  df-op 4640  df-br 5154  df-opab 5216  df-id 5580  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-fun 6556
This theorem is referenced by:  funimaex  6647  resfunexg  7232  resfunexgALT  7961  fnexALT  7964  naddcllem  8706  naddunif  8723  wdomimag  9630  carduniima  10139  dfac12lem2  10187  ttukeylem3  10554  nnexALT  12266  seqex  14023  fbasrn  23879  elfm3  23945  bdayimaon  27723  nosupno  27733  noinfno  27748  noeta2  27814  etasslt2  27844  scutbdaybnd2lim  27847  madeval  27876  oldval  27878  negsunif  28064  fnimafnex  43090  fundcmpsurinjlem3  46955  fundcmpsurbijinjpreimafv  46962  fundcmpsurbijinj  46965  fundcmpsurinjALT  46967  uspgrimprop  47435  grimuhgr  47440
  Copyright terms: Public domain W3C validator
OSZAR »