![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > hlomcmat | Structured version Visualization version GIF version |
Description: A Hilbert lattice is orthomodular, complete, and atomic. (Contributed by NM, 5-Nov-2012.) |
Ref | Expression |
---|---|
hlomcmat | ⊢ (𝐾 ∈ HL → (𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hloml 38861 | . 2 ⊢ (𝐾 ∈ HL → 𝐾 ∈ OML) | |
2 | hlclat 38862 | . 2 ⊢ (𝐾 ∈ HL → 𝐾 ∈ CLat) | |
3 | hlatl 38864 | . 2 ⊢ (𝐾 ∈ HL → 𝐾 ∈ AtLat) | |
4 | 1, 2, 3 | 3jca 1125 | 1 ⊢ (𝐾 ∈ HL → (𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1084 ∈ wcel 2098 CLatccla 18497 OMLcoml 38679 AtLatcal 38768 HLchlt 38854 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2699 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2706 df-cleq 2720 df-clel 2806 df-ral 3059 df-rex 3068 df-rab 3431 df-v 3475 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4327 df-if 4533 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-br 5153 df-iota 6505 df-fv 6561 df-ov 7429 df-cvlat 38826 df-hlat 38855 |
This theorem is referenced by: hlatmstcOLDN 38902 hlatle 38903 hlrelat1 38905 pmaple 39266 pol1N 39415 polpmapN 39417 pmaplubN 39429 |
Copyright terms: Public domain | W3C validator |