![]() |
Mathbox for Giovanni Mascellani |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > iineq12f | Structured version Visualization version GIF version |
Description: Equality deduction for indexed intersections. (Contributed by Giovanni Mascellani, 10-Apr-2018.) |
Ref | Expression |
---|---|
iineq12f.1 | ⊢ Ⅎ𝑥𝐴 |
iineq12f.2 | ⊢ Ⅎ𝑥𝐵 |
Ref | Expression |
---|---|
iineq12f | ⊢ ((𝐴 = 𝐵 ∧ ∀𝑥 ∈ 𝐴 𝐶 = 𝐷) → ∩ 𝑥 ∈ 𝐴 𝐶 = ∩ 𝑥 ∈ 𝐵 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq2 2818 | . . . . . 6 ⊢ (𝐶 = 𝐷 → (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) | |
2 | 1 | ralimi 3079 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐴 𝐶 = 𝐷 → ∀𝑥 ∈ 𝐴 (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) |
3 | ralbi 3099 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐴 (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷) → (∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐶 ↔ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐷)) | |
4 | 2, 3 | syl 17 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 𝐶 = 𝐷 → (∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐶 ↔ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐷)) |
5 | iineq12f.1 | . . . . 5 ⊢ Ⅎ𝑥𝐴 | |
6 | iineq12f.2 | . . . . 5 ⊢ Ⅎ𝑥𝐵 | |
7 | 5, 6 | raleqf 3345 | . . . 4 ⊢ (𝐴 = 𝐵 → (∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐷 ↔ ∀𝑥 ∈ 𝐵 𝑦 ∈ 𝐷)) |
8 | 4, 7 | sylan9bbr 510 | . . 3 ⊢ ((𝐴 = 𝐵 ∧ ∀𝑥 ∈ 𝐴 𝐶 = 𝐷) → (∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐶 ↔ ∀𝑥 ∈ 𝐵 𝑦 ∈ 𝐷)) |
9 | 8 | abbidv 2797 | . 2 ⊢ ((𝐴 = 𝐵 ∧ ∀𝑥 ∈ 𝐴 𝐶 = 𝐷) → {𝑦 ∣ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐶} = {𝑦 ∣ ∀𝑥 ∈ 𝐵 𝑦 ∈ 𝐷}) |
10 | df-iin 4995 | . 2 ⊢ ∩ 𝑥 ∈ 𝐴 𝐶 = {𝑦 ∣ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐶} | |
11 | df-iin 4995 | . 2 ⊢ ∩ 𝑥 ∈ 𝐵 𝐷 = {𝑦 ∣ ∀𝑥 ∈ 𝐵 𝑦 ∈ 𝐷} | |
12 | 9, 10, 11 | 3eqtr4g 2793 | 1 ⊢ ((𝐴 = 𝐵 ∧ ∀𝑥 ∈ 𝐴 𝐶 = 𝐷) → ∩ 𝑥 ∈ 𝐴 𝐶 = ∩ 𝑥 ∈ 𝐵 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1534 ∈ wcel 2099 {cab 2705 Ⅎwnfc 2879 ∀wral 3057 ∩ ciin 4993 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-tru 1537 df-ex 1775 df-nf 1779 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ral 3058 df-iin 4995 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |