![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > impexp | Structured version Visualization version GIF version |
Description: Import-export theorem. Part of Theorem *4.87 of [WhiteheadRussell] p. 122. (Contributed by NM, 10-Jan-1993.) (Proof shortened by Wolf Lammen, 24-Mar-2013.) |
Ref | Expression |
---|---|
impexp | ⊢ (((𝜑 ∧ 𝜓) → 𝜒) ↔ (𝜑 → (𝜓 → 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm3.3 447 | . 2 ⊢ (((𝜑 ∧ 𝜓) → 𝜒) → (𝜑 → (𝜓 → 𝜒))) | |
2 | pm3.31 448 | . 2 ⊢ ((𝜑 → (𝜓 → 𝜒)) → ((𝜑 ∧ 𝜓) → 𝜒)) | |
3 | 1, 2 | impbii 208 | 1 ⊢ (((𝜑 ∧ 𝜓) → 𝜒) ↔ (𝜑 → (𝜓 → 𝜒))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 395 |
This theorem is referenced by: imdistan 566 pm4.14 805 nan 828 pm4.87 841 pm5.6 999 2sb6 2082 r2allem 3132 r3al 3187 r19.23t 3243 moelOLD 3389 ceqsralt 3497 rspc2gv 3618 ralrab 3687 ralrab2 3692 euind 3718 reu2 3719 reu3 3721 rmo4 3724 rmo3f 3728 reuind 3747 2reu5lem3 3751 rmo2 3880 rmo3 3882 rmoanim 3887 rmoanimALT 3888 ralss 4054 rabss 4068 raldifb 4144 rabsssn 4675 raldifsni 4804 unissb 4947 unissbOLD 4948 elintrab 4968 ssintrab 4979 dftr5 5274 dftr5OLD 5275 axrep5 5296 reusv2lem4 5405 reusv2 5407 reusv3 5409 raliunxp 5846 dfpo2 6307 fununi 6634 fvn0ssdmfun 7088 dff13 7270 ordunisuc2 7854 dfom2 7878 frpoins3xpg 8154 frpoins3xp3g 8155 xpord2indlem 8161 xpord3inddlem 8168 dfsmo2 8377 qliftfun 8831 dfsup2 9487 wemapsolem 9593 iscard2 10019 acnnum 10095 aceq1 10160 dfac9 10179 dfacacn 10184 axgroth6 10871 sstskm 10885 infm3 12225 prime 12695 raluz 12932 raluz2 12933 nnwos 12951 ralrp 13048 facwordi 14306 cotr2g 14981 rexuzre 15357 limsupgle 15479 ello12 15518 elo12 15529 lo1resb 15566 rlimresb 15567 o1resb 15568 modfsummod 15798 isprm2 16683 isprm4 16685 isprm7 16709 acsfn2 17676 pgpfac1 20080 isirred2 20403 isdomn2OLD 20690 isdomn3 20693 islindf4 21836 coe1fzgsumd 22295 evl1gsumd 22348 ist1-2 23342 isnrm2 23353 dfconn2 23414 1stccn 23458 iskgen3 23544 hausdiag 23640 cnflf 23997 txflf 24001 cnfcf 24037 metcnp 24541 caucfil 25302 ovolgelb 25500 ismbl 25546 dyadmbllem 25619 itg2leub 25755 ellimc3 25899 mdegleb 26091 jensen 27017 dchrelbas2 27266 dchrelbas3 27267 eqscut2 27836 nmoubi 30705 nmobndseqi 30712 nmobndseqiALT 30713 h1dei 31483 nmopub 31841 nmfnleub 31858 mdsl1i 32254 mdsl2i 32255 elat2 32273 islinds5 33242 islbs5 33255 eulerpartlemgvv 34210 bnj115 34570 bnj1109 34631 bnj1533 34697 bnj580 34758 bnj864 34767 bnj865 34768 bnj1049 34819 bnj1090 34824 bnj1093 34825 bnj1133 34834 bnj1171 34845 climuzcnv 35499 axextprim 35523 biimpexp 35539 dfon2lem8 35614 dffun10 35738 filnetlem4 36093 bj-substax12 36426 wl-2sb6d 37253 poimirlem25 37346 poimirlem30 37351 ralin 37946 r2alan 37947 inxpss 38009 moantr 38062 isat3 39005 isltrn2N 39819 cdlemefrs29bpre0 40095 cdleme32fva 40136 sn-axrep5v 41938 dford4 42687 fnwe2lem2 42712 ifpidg 43158 ifpim23g 43162 elmapintrab 43243 undmrnresiss 43271 df3or2 43435 df3an2 43436 dfhe3 43442 dffrege76 43606 dffrege115 43645 ntrneiiso 43758 ismnushort 43975 pm11.62 44068 2sbc6g 44089 expcomdg 44176 impexpd 44189 dfvd2 44255 dfvd3 44267 rabssf 44720 2rexsb 46714 2rexrsb 46715 snlindsntor 47854 elbigo2 47940 exp12bd 48183 ralbidb 48187 ralbidc 48188 |
Copyright terms: Public domain | W3C validator |