Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iscsrg Structured version   Visualization version   GIF version

Theorem iscsrg 41441
Description: A commutative semiring is a semiring whose multiplication is a commutative monoid. (Contributed by metakunt, 4-Apr-2025.)
Hypothesis
Ref Expression
iscsrg.g 𝐺 = (mulGrp‘𝑅)
Assertion
Ref Expression
iscsrg (𝑅 ∈ CSRing ↔ (𝑅 ∈ SRing ∧ 𝐺 ∈ CMnd))

Proof of Theorem iscsrg
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6897 . . . 4 (𝑟 = 𝑅 → (mulGrp‘𝑟) = (mulGrp‘𝑅))
2 iscsrg.g . . . 4 𝐺 = (mulGrp‘𝑅)
31, 2eqtr4di 2786 . . 3 (𝑟 = 𝑅 → (mulGrp‘𝑟) = 𝐺)
43eleq1d 2814 . 2 (𝑟 = 𝑅 → ((mulGrp‘𝑟) ∈ CMnd ↔ 𝐺 ∈ CMnd))
5 df-csring 41440 . 2 CSRing = {𝑟 ∈ SRing ∣ (mulGrp‘𝑟) ∈ CMnd}
64, 5elrab2 3685 1 (𝑅 ∈ CSRing ↔ (𝑅 ∈ SRing ∧ 𝐺 ∈ CMnd))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395   = wceq 1534  wcel 2099  cfv 6548  CMndccmn 19734  mulGrpcmgp 20073  SRingcsrg 20125   CSRing ccsrg 41439
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2699
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-sb 2061  df-clab 2706  df-cleq 2720  df-clel 2806  df-rab 3430  df-v 3473  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-br 5149  df-iota 6500  df-fv 6556  df-csring 41440
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator
OSZAR »