![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isnvc | Structured version Visualization version GIF version |
Description: A normed vector space is just a normed module which is algebraically a vector space. (Contributed by Mario Carneiro, 4-Oct-2015.) |
Ref | Expression |
---|---|
isnvc | ⊢ (𝑊 ∈ NrmVec ↔ (𝑊 ∈ NrmMod ∧ 𝑊 ∈ LVec)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-nvc 24509 | . 2 ⊢ NrmVec = (NrmMod ∩ LVec) | |
2 | 1 | elin2 4192 | 1 ⊢ (𝑊 ∈ NrmVec ↔ (𝑊 ∈ NrmMod ∧ 𝑊 ∈ LVec)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 394 ∈ wcel 2098 LVecclvec 20986 NrmModcnlm 24502 NrmVeccnvc 24503 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2696 |
This theorem depends on definitions: df-bi 206 df-an 395 df-tru 1536 df-ex 1774 df-sb 2060 df-clab 2703 df-cleq 2717 df-clel 2802 df-v 3465 df-in 3948 df-nvc 24509 |
This theorem is referenced by: nvcnlm 24626 nvclvec 24627 isnvc2 24629 rlmnvc 24633 isncvsngp 25090 cphnvc 25117 |
Copyright terms: Public domain | W3C validator |