![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nlmtlm | Structured version Visualization version GIF version |
Description: A normed module is a topological module. (Contributed by Mario Carneiro, 6-Oct-2015.) |
Ref | Expression |
---|---|
nlmtlm | ⊢ (𝑊 ∈ NrmMod → 𝑊 ∈ TopMod) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nlmngp 24612 | . . . . 5 ⊢ (𝑊 ∈ NrmMod → 𝑊 ∈ NrmGrp) | |
2 | nlmlmod 24613 | . . . . . 6 ⊢ (𝑊 ∈ NrmMod → 𝑊 ∈ LMod) | |
3 | lmodabl 20796 | . . . . . 6 ⊢ (𝑊 ∈ LMod → 𝑊 ∈ Abel) | |
4 | 2, 3 | syl 17 | . . . . 5 ⊢ (𝑊 ∈ NrmMod → 𝑊 ∈ Abel) |
5 | ngptgp 24563 | . . . . 5 ⊢ ((𝑊 ∈ NrmGrp ∧ 𝑊 ∈ Abel) → 𝑊 ∈ TopGrp) | |
6 | 1, 4, 5 | syl2anc 582 | . . . 4 ⊢ (𝑊 ∈ NrmMod → 𝑊 ∈ TopGrp) |
7 | tgptmd 24001 | . . . 4 ⊢ (𝑊 ∈ TopGrp → 𝑊 ∈ TopMnd) | |
8 | 6, 7 | syl 17 | . . 3 ⊢ (𝑊 ∈ NrmMod → 𝑊 ∈ TopMnd) |
9 | eqid 2725 | . . . . 5 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
10 | 9 | nlmnrg 24614 | . . . 4 ⊢ (𝑊 ∈ NrmMod → (Scalar‘𝑊) ∈ NrmRing) |
11 | nrgtrg 24625 | . . . 4 ⊢ ((Scalar‘𝑊) ∈ NrmRing → (Scalar‘𝑊) ∈ TopRing) | |
12 | 10, 11 | syl 17 | . . 3 ⊢ (𝑊 ∈ NrmMod → (Scalar‘𝑊) ∈ TopRing) |
13 | 8, 2, 12 | 3jca 1125 | . 2 ⊢ (𝑊 ∈ NrmMod → (𝑊 ∈ TopMnd ∧ 𝑊 ∈ LMod ∧ (Scalar‘𝑊) ∈ TopRing)) |
14 | eqid 2725 | . . 3 ⊢ ( ·sf ‘𝑊) = ( ·sf ‘𝑊) | |
15 | eqid 2725 | . . 3 ⊢ (TopOpen‘𝑊) = (TopOpen‘𝑊) | |
16 | eqid 2725 | . . 3 ⊢ (TopOpen‘(Scalar‘𝑊)) = (TopOpen‘(Scalar‘𝑊)) | |
17 | 9, 14, 15, 16 | nlmvscn 24622 | . 2 ⊢ (𝑊 ∈ NrmMod → ( ·sf ‘𝑊) ∈ (((TopOpen‘(Scalar‘𝑊)) ×t (TopOpen‘𝑊)) Cn (TopOpen‘𝑊))) |
18 | 14, 15, 9, 16 | istlm 24107 | . 2 ⊢ (𝑊 ∈ TopMod ↔ ((𝑊 ∈ TopMnd ∧ 𝑊 ∈ LMod ∧ (Scalar‘𝑊) ∈ TopRing) ∧ ( ·sf ‘𝑊) ∈ (((TopOpen‘(Scalar‘𝑊)) ×t (TopOpen‘𝑊)) Cn (TopOpen‘𝑊)))) |
19 | 13, 17, 18 | sylanbrc 581 | 1 ⊢ (𝑊 ∈ NrmMod → 𝑊 ∈ TopMod) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1084 ∈ wcel 2098 ‘cfv 6543 (class class class)co 7416 Scalarcsca 17235 TopOpenctopn 17402 Abelcabl 19740 LModclmod 20747 ·sf cscaf 20748 Cn ccn 23146 ×t ctx 23482 TopMndctmd 23992 TopGrpctgp 23993 TopRingctrg 24078 TopModctlm 24080 NrmGrpcngp 24504 NrmRingcnrg 24506 NrmModcnlm 24507 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5280 ax-sep 5294 ax-nul 5301 ax-pow 5359 ax-pr 5423 ax-un 7738 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 ax-pre-sup 11216 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3769 df-csb 3885 df-dif 3942 df-un 3944 df-in 3946 df-ss 3956 df-pss 3959 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-tp 4629 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-iin 4994 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-se 5628 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7372 df-ov 7419 df-oprab 7420 df-mpo 7421 df-of 7682 df-om 7869 df-1st 7991 df-2nd 7992 df-supp 8164 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-2o 8486 df-er 8723 df-map 8845 df-ixp 8915 df-en 8963 df-dom 8964 df-sdom 8965 df-fin 8966 df-fsupp 9386 df-fi 9434 df-sup 9465 df-inf 9466 df-oi 9533 df-card 9962 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11476 df-neg 11477 df-div 11902 df-nn 12243 df-2 12305 df-3 12306 df-4 12307 df-5 12308 df-6 12309 df-7 12310 df-8 12311 df-9 12312 df-n0 12503 df-z 12589 df-dec 12708 df-uz 12853 df-q 12963 df-rp 13007 df-xneg 13124 df-xadd 13125 df-xmul 13126 df-ico 13362 df-icc 13363 df-fz 13517 df-fzo 13660 df-seq 13999 df-exp 14059 df-hash 14322 df-cj 15078 df-re 15079 df-im 15080 df-sqrt 15214 df-abs 15215 df-struct 17115 df-sets 17132 df-slot 17150 df-ndx 17162 df-base 17180 df-ress 17209 df-plusg 17245 df-mulr 17246 df-sca 17248 df-vsca 17249 df-ip 17250 df-tset 17251 df-ple 17252 df-ds 17254 df-hom 17256 df-cco 17257 df-rest 17403 df-topn 17404 df-0g 17422 df-gsum 17423 df-topgen 17424 df-pt 17425 df-prds 17428 df-xrs 17483 df-qtop 17488 df-imas 17489 df-xps 17491 df-mre 17565 df-mrc 17566 df-acs 17568 df-plusf 18598 df-mgm 18599 df-sgrp 18678 df-mnd 18694 df-submnd 18740 df-grp 18897 df-minusg 18898 df-sbg 18899 df-mulg 19028 df-subg 19082 df-cntz 19272 df-cmn 19741 df-abl 19742 df-mgp 20079 df-rng 20097 df-ur 20126 df-ring 20179 df-subrng 20487 df-subrg 20512 df-abv 20701 df-lmod 20749 df-scaf 20750 df-sra 21062 df-rgmod 21063 df-psmet 21275 df-xmet 21276 df-met 21277 df-bl 21278 df-mopn 21279 df-top 22814 df-topon 22831 df-topsp 22853 df-bases 22867 df-cn 23149 df-cnp 23150 df-tx 23484 df-hmeo 23677 df-tmd 23994 df-tgp 23995 df-trg 24082 df-tlm 24084 df-xms 24244 df-ms 24245 df-tms 24246 df-nm 24509 df-ngp 24510 df-nrg 24512 df-nlm 24513 |
This theorem is referenced by: nvctvc 24635 |
Copyright terms: Public domain | W3C validator |