![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isseti | Structured version Visualization version GIF version |
Description: A way to say "𝐴 is a set" (inference form). (Contributed by NM, 24-Jun-1993.) Remove dependencies on axioms. (Revised by BJ, 13-Jul-2019.) |
Ref | Expression |
---|---|
isseti.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
isseti | ⊢ ∃𝑥 𝑥 = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isseti.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | elissetv 2810 | . 2 ⊢ (𝐴 ∈ V → ∃𝑥 𝑥 = 𝐴) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ ∃𝑥 𝑥 = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1534 ∃wex 1774 ∈ wcel 2099 Vcvv 3471 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1775 df-clel 2806 |
This theorem is referenced by: rexcom4b 3501 ceqsal 3507 ceqsalv 3509 ceqsexOLD 3522 ceqsexvOLD 3524 vtocl 3543 vtoclef 3548 vtoclfOLD 3550 euind 3719 eusv2nf 5395 zfpair 5421 axprALT 5422 opabn0 5555 isarep2 6644 dfoprab2 7478 rnoprab 7524 ov3 7584 omeu 8606 cflem 10270 genpass 11033 supaddc 12212 supadd 12213 supmul1 12214 supmullem2 12216 supmul 12217 ruclem13 16219 joindm 18367 meetdm 18381 dmscut 27757 bnj986 34586 satfdm 34979 fmla0 34992 fmlasuc0 34994 bj-snsetex 36442 bj-restn0 36569 bj-restuni 36576 ac6s6f 37646 tfsconcatlem 42765 elintima 43083 natlocalincr 46262 tworepnotupword 46272 funressnfv 46425 elpglem2 48143 |
Copyright terms: Public domain | W3C validator |