![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > issetri | Structured version Visualization version GIF version |
Description: A way to say "𝐴 is a set" (inference form). (Contributed by NM, 21-Jun-1993.) |
Ref | Expression |
---|---|
issetri.1 | ⊢ ∃𝑥 𝑥 = 𝐴 |
Ref | Expression |
---|---|
issetri | ⊢ 𝐴 ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | issetri.1 | . 2 ⊢ ∃𝑥 𝑥 = 𝐴 | |
2 | isset 3483 | . 2 ⊢ (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴) | |
3 | 1, 2 | mpbir 230 | 1 ⊢ 𝐴 ∈ V |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1534 ∃wex 1774 ∈ wcel 2099 Vcvv 3470 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2699 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1537 df-ex 1775 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-v 3472 |
This theorem is referenced by: zfrep4 5290 0ex 5301 inex1 5311 vpwex 5371 zfpair2 5424 vuniex 7738 bj-snsetex 36436 |
Copyright terms: Public domain | W3C validator |