MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  issetri Structured version   Visualization version   GIF version

Theorem issetri 3487
Description: A way to say "𝐴 is a set" (inference form). (Contributed by NM, 21-Jun-1993.)
Hypothesis
Ref Expression
issetri.1 𝑥 𝑥 = 𝐴
Assertion
Ref Expression
issetri 𝐴 ∈ V
Distinct variable group:   𝑥,𝐴

Proof of Theorem issetri
StepHypRef Expression
1 issetri.1 . 2 𝑥 𝑥 = 𝐴
2 isset 3483 . 2 (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴)
31, 2mpbir 230 1 𝐴 ∈ V
Colors of variables: wff setvar class
Syntax hints:   = wceq 1534  wex 1774  wcel 2099  Vcvv 3470
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2699
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1537  df-ex 1775  df-sb 2061  df-clab 2706  df-cleq 2720  df-clel 2806  df-v 3472
This theorem is referenced by:  zfrep4  5290  0ex  5301  inex1  5311  vpwex  5371  zfpair2  5424  vuniex  7738  bj-snsetex  36436
  Copyright terms: Public domain W3C validator
OSZAR »