![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > vuniex | Structured version Visualization version GIF version |
Description: The union of a setvar is a set. (Contributed by BJ, 3-May-2021.) (Revised by BJ, 6-Apr-2024.) |
Ref | Expression |
---|---|
vuniex | ⊢ ∪ 𝑥 ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uniex2 7737 | . 2 ⊢ ∃𝑦 𝑦 = ∪ 𝑥 | |
2 | 1 | issetri 3487 | 1 ⊢ ∪ 𝑥 ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2099 Vcvv 3470 ∪ cuni 4903 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2699 ax-sep 5293 ax-un 7734 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1537 df-ex 1775 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-v 3472 df-uni 4904 |
This theorem is referenced by: uniexg 7739 uniuni 7758 rankuni 9880 r0weon 10029 dfac3 10138 dfac5lem4 10143 dfac8 10152 dfacacn 10158 kmlem2 10168 cfslb2n 10285 ttukeylem5 10530 ttukeylem6 10531 brdom7disj 10548 brdom6disj 10549 intwun 10752 wunex2 10755 fnmrc 17580 mrcfval 17581 mrisval 17603 sylow2a 19567 toprntopon 22820 distop 22891 fctop 22900 cctop 22902 ppttop 22903 epttop 22905 fncld 22919 mretopd 22989 toponmre 22990 iscnp2 23136 2ndcsep 23356 kgenf 23438 alexsubALTlem2 23945 pwsiga 33743 sigainb 33749 dmsigagen 33757 pwldsys 33770 ldsysgenld 33773 ldgenpisyslem1 33776 ddemeas 33849 brapply 35528 dfrdg4 35541 fnessref 35835 neibastop1 35837 finxpreclem2 36863 mbfresfi 37133 pwinfi 42988 pwsal 45697 intsal 45712 salexct 45716 0ome 45911 |
Copyright terms: Public domain | W3C validator |