Step | Hyp | Ref
| Expression |
1 | | istrkg.p |
. . 3
⊢ 𝑃 = (Base‘𝐺) |
2 | | istrkg.d |
. . 3
⊢ − =
(dist‘𝐺) |
3 | | simpl 481 |
. . . . 5
⊢ ((𝑝 = 𝑃 ∧ 𝑑 = − ) → 𝑝 = 𝑃) |
4 | | simpr 483 |
. . . . . . . 8
⊢ ((𝑝 = 𝑃 ∧ 𝑑 = − ) → 𝑑 = − ) |
5 | 4 | oveqd 7436 |
. . . . . . 7
⊢ ((𝑝 = 𝑃 ∧ 𝑑 = − ) → (𝑥𝑑𝑦) = (𝑥 − 𝑦)) |
6 | 4 | oveqd 7436 |
. . . . . . 7
⊢ ((𝑝 = 𝑃 ∧ 𝑑 = − ) → (𝑦𝑑𝑥) = (𝑦 − 𝑥)) |
7 | 5, 6 | eqeq12d 2741 |
. . . . . 6
⊢ ((𝑝 = 𝑃 ∧ 𝑑 = − ) → ((𝑥𝑑𝑦) = (𝑦𝑑𝑥) ↔ (𝑥 − 𝑦) = (𝑦 − 𝑥))) |
8 | 3, 7 | raleqbidv 3329 |
. . . . 5
⊢ ((𝑝 = 𝑃 ∧ 𝑑 = − ) →
(∀𝑦 ∈ 𝑝 (𝑥𝑑𝑦) = (𝑦𝑑𝑥) ↔ ∀𝑦 ∈ 𝑃 (𝑥 − 𝑦) = (𝑦 − 𝑥))) |
9 | 3, 8 | raleqbidv 3329 |
. . . 4
⊢ ((𝑝 = 𝑃 ∧ 𝑑 = − ) →
(∀𝑥 ∈ 𝑝 ∀𝑦 ∈ 𝑝 (𝑥𝑑𝑦) = (𝑦𝑑𝑥) ↔ ∀𝑥 ∈ 𝑃 ∀𝑦 ∈ 𝑃 (𝑥 − 𝑦) = (𝑦 − 𝑥))) |
10 | 4 | oveqd 7436 |
. . . . . . . . 9
⊢ ((𝑝 = 𝑃 ∧ 𝑑 = − ) → (𝑧𝑑𝑧) = (𝑧 − 𝑧)) |
11 | 5, 10 | eqeq12d 2741 |
. . . . . . . 8
⊢ ((𝑝 = 𝑃 ∧ 𝑑 = − ) → ((𝑥𝑑𝑦) = (𝑧𝑑𝑧) ↔ (𝑥 − 𝑦) = (𝑧 − 𝑧))) |
12 | 11 | imbi1d 340 |
. . . . . . 7
⊢ ((𝑝 = 𝑃 ∧ 𝑑 = − ) → (((𝑥𝑑𝑦) = (𝑧𝑑𝑧) → 𝑥 = 𝑦) ↔ ((𝑥 − 𝑦) = (𝑧 − 𝑧) → 𝑥 = 𝑦))) |
13 | 3, 12 | raleqbidv 3329 |
. . . . . 6
⊢ ((𝑝 = 𝑃 ∧ 𝑑 = − ) →
(∀𝑧 ∈ 𝑝 ((𝑥𝑑𝑦) = (𝑧𝑑𝑧) → 𝑥 = 𝑦) ↔ ∀𝑧 ∈ 𝑃 ((𝑥 − 𝑦) = (𝑧 − 𝑧) → 𝑥 = 𝑦))) |
14 | 3, 13 | raleqbidv 3329 |
. . . . 5
⊢ ((𝑝 = 𝑃 ∧ 𝑑 = − ) →
(∀𝑦 ∈ 𝑝 ∀𝑧 ∈ 𝑝 ((𝑥𝑑𝑦) = (𝑧𝑑𝑧) → 𝑥 = 𝑦) ↔ ∀𝑦 ∈ 𝑃 ∀𝑧 ∈ 𝑃 ((𝑥 − 𝑦) = (𝑧 − 𝑧) → 𝑥 = 𝑦))) |
15 | 3, 14 | raleqbidv 3329 |
. . . 4
⊢ ((𝑝 = 𝑃 ∧ 𝑑 = − ) →
(∀𝑥 ∈ 𝑝 ∀𝑦 ∈ 𝑝 ∀𝑧 ∈ 𝑝 ((𝑥𝑑𝑦) = (𝑧𝑑𝑧) → 𝑥 = 𝑦) ↔ ∀𝑥 ∈ 𝑃 ∀𝑦 ∈ 𝑃 ∀𝑧 ∈ 𝑃 ((𝑥 − 𝑦) = (𝑧 − 𝑧) → 𝑥 = 𝑦))) |
16 | 9, 15 | anbi12d 630 |
. . 3
⊢ ((𝑝 = 𝑃 ∧ 𝑑 = − ) →
((∀𝑥 ∈ 𝑝 ∀𝑦 ∈ 𝑝 (𝑥𝑑𝑦) = (𝑦𝑑𝑥) ∧ ∀𝑥 ∈ 𝑝 ∀𝑦 ∈ 𝑝 ∀𝑧 ∈ 𝑝 ((𝑥𝑑𝑦) = (𝑧𝑑𝑧) → 𝑥 = 𝑦)) ↔ (∀𝑥 ∈ 𝑃 ∀𝑦 ∈ 𝑃 (𝑥 − 𝑦) = (𝑦 − 𝑥) ∧ ∀𝑥 ∈ 𝑃 ∀𝑦 ∈ 𝑃 ∀𝑧 ∈ 𝑃 ((𝑥 − 𝑦) = (𝑧 − 𝑧) → 𝑥 = 𝑦)))) |
17 | 1, 2, 16 | sbcie2s 17133 |
. 2
⊢ (𝑓 = 𝐺 → ([(Base‘𝑓) / 𝑝][(dist‘𝑓) / 𝑑](∀𝑥 ∈ 𝑝 ∀𝑦 ∈ 𝑝 (𝑥𝑑𝑦) = (𝑦𝑑𝑥) ∧ ∀𝑥 ∈ 𝑝 ∀𝑦 ∈ 𝑝 ∀𝑧 ∈ 𝑝 ((𝑥𝑑𝑦) = (𝑧𝑑𝑧) → 𝑥 = 𝑦)) ↔ (∀𝑥 ∈ 𝑃 ∀𝑦 ∈ 𝑃 (𝑥 − 𝑦) = (𝑦 − 𝑥) ∧ ∀𝑥 ∈ 𝑃 ∀𝑦 ∈ 𝑃 ∀𝑧 ∈ 𝑃 ((𝑥 − 𝑦) = (𝑧 − 𝑧) → 𝑥 = 𝑦)))) |
18 | | df-trkgc 28324 |
. 2
⊢
TarskiGC = {𝑓 ∣ [(Base‘𝑓) / 𝑝][(dist‘𝑓) / 𝑑](∀𝑥 ∈ 𝑝 ∀𝑦 ∈ 𝑝 (𝑥𝑑𝑦) = (𝑦𝑑𝑥) ∧ ∀𝑥 ∈ 𝑝 ∀𝑦 ∈ 𝑝 ∀𝑧 ∈ 𝑝 ((𝑥𝑑𝑦) = (𝑧𝑑𝑧) → 𝑥 = 𝑦))} |
19 | 17, 18 | elab4g 3669 |
1
⊢ (𝐺 ∈ TarskiGC
↔ (𝐺 ∈ V ∧
(∀𝑥 ∈ 𝑃 ∀𝑦 ∈ 𝑃 (𝑥 − 𝑦) = (𝑦 − 𝑥) ∧ ∀𝑥 ∈ 𝑃 ∀𝑦 ∈ 𝑃 ∀𝑧 ∈ 𝑃 ((𝑥 − 𝑦) = (𝑧 − 𝑧) → 𝑥 = 𝑦)))) |