MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  istrkgc Structured version   Visualization version   GIF version

Theorem istrkgc 28330
Description: Property of being a Tarski geometry - congruence part. (Contributed by Thierry Arnoux, 14-Mar-2019.)
Hypotheses
Ref Expression
istrkg.p 𝑃 = (Base‘𝐺)
istrkg.d = (dist‘𝐺)
istrkg.i 𝐼 = (Itv‘𝐺)
Assertion
Ref Expression
istrkgc (𝐺 ∈ TarskiGC ↔ (𝐺 ∈ V ∧ (∀𝑥𝑃𝑦𝑃 (𝑥 𝑦) = (𝑦 𝑥) ∧ ∀𝑥𝑃𝑦𝑃𝑧𝑃 ((𝑥 𝑦) = (𝑧 𝑧) → 𝑥 = 𝑦))))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐼   𝑥,𝑃,𝑦,𝑧   𝑥, ,𝑦,𝑧
Allowed substitution hints:   𝐺(𝑥,𝑦,𝑧)

Proof of Theorem istrkgc
Dummy variables 𝑓 𝑑 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 istrkg.p . . 3 𝑃 = (Base‘𝐺)
2 istrkg.d . . 3 = (dist‘𝐺)
3 simpl 481 . . . . 5 ((𝑝 = 𝑃𝑑 = ) → 𝑝 = 𝑃)
4 simpr 483 . . . . . . . 8 ((𝑝 = 𝑃𝑑 = ) → 𝑑 = )
54oveqd 7436 . . . . . . 7 ((𝑝 = 𝑃𝑑 = ) → (𝑥𝑑𝑦) = (𝑥 𝑦))
64oveqd 7436 . . . . . . 7 ((𝑝 = 𝑃𝑑 = ) → (𝑦𝑑𝑥) = (𝑦 𝑥))
75, 6eqeq12d 2741 . . . . . 6 ((𝑝 = 𝑃𝑑 = ) → ((𝑥𝑑𝑦) = (𝑦𝑑𝑥) ↔ (𝑥 𝑦) = (𝑦 𝑥)))
83, 7raleqbidv 3329 . . . . 5 ((𝑝 = 𝑃𝑑 = ) → (∀𝑦𝑝 (𝑥𝑑𝑦) = (𝑦𝑑𝑥) ↔ ∀𝑦𝑃 (𝑥 𝑦) = (𝑦 𝑥)))
93, 8raleqbidv 3329 . . . 4 ((𝑝 = 𝑃𝑑 = ) → (∀𝑥𝑝𝑦𝑝 (𝑥𝑑𝑦) = (𝑦𝑑𝑥) ↔ ∀𝑥𝑃𝑦𝑃 (𝑥 𝑦) = (𝑦 𝑥)))
104oveqd 7436 . . . . . . . . 9 ((𝑝 = 𝑃𝑑 = ) → (𝑧𝑑𝑧) = (𝑧 𝑧))
115, 10eqeq12d 2741 . . . . . . . 8 ((𝑝 = 𝑃𝑑 = ) → ((𝑥𝑑𝑦) = (𝑧𝑑𝑧) ↔ (𝑥 𝑦) = (𝑧 𝑧)))
1211imbi1d 340 . . . . . . 7 ((𝑝 = 𝑃𝑑 = ) → (((𝑥𝑑𝑦) = (𝑧𝑑𝑧) → 𝑥 = 𝑦) ↔ ((𝑥 𝑦) = (𝑧 𝑧) → 𝑥 = 𝑦)))
133, 12raleqbidv 3329 . . . . . 6 ((𝑝 = 𝑃𝑑 = ) → (∀𝑧𝑝 ((𝑥𝑑𝑦) = (𝑧𝑑𝑧) → 𝑥 = 𝑦) ↔ ∀𝑧𝑃 ((𝑥 𝑦) = (𝑧 𝑧) → 𝑥 = 𝑦)))
143, 13raleqbidv 3329 . . . . 5 ((𝑝 = 𝑃𝑑 = ) → (∀𝑦𝑝𝑧𝑝 ((𝑥𝑑𝑦) = (𝑧𝑑𝑧) → 𝑥 = 𝑦) ↔ ∀𝑦𝑃𝑧𝑃 ((𝑥 𝑦) = (𝑧 𝑧) → 𝑥 = 𝑦)))
153, 14raleqbidv 3329 . . . 4 ((𝑝 = 𝑃𝑑 = ) → (∀𝑥𝑝𝑦𝑝𝑧𝑝 ((𝑥𝑑𝑦) = (𝑧𝑑𝑧) → 𝑥 = 𝑦) ↔ ∀𝑥𝑃𝑦𝑃𝑧𝑃 ((𝑥 𝑦) = (𝑧 𝑧) → 𝑥 = 𝑦)))
169, 15anbi12d 630 . . 3 ((𝑝 = 𝑃𝑑 = ) → ((∀𝑥𝑝𝑦𝑝 (𝑥𝑑𝑦) = (𝑦𝑑𝑥) ∧ ∀𝑥𝑝𝑦𝑝𝑧𝑝 ((𝑥𝑑𝑦) = (𝑧𝑑𝑧) → 𝑥 = 𝑦)) ↔ (∀𝑥𝑃𝑦𝑃 (𝑥 𝑦) = (𝑦 𝑥) ∧ ∀𝑥𝑃𝑦𝑃𝑧𝑃 ((𝑥 𝑦) = (𝑧 𝑧) → 𝑥 = 𝑦))))
171, 2, 16sbcie2s 17133 . 2 (𝑓 = 𝐺 → ([(Base‘𝑓) / 𝑝][(dist‘𝑓) / 𝑑](∀𝑥𝑝𝑦𝑝 (𝑥𝑑𝑦) = (𝑦𝑑𝑥) ∧ ∀𝑥𝑝𝑦𝑝𝑧𝑝 ((𝑥𝑑𝑦) = (𝑧𝑑𝑧) → 𝑥 = 𝑦)) ↔ (∀𝑥𝑃𝑦𝑃 (𝑥 𝑦) = (𝑦 𝑥) ∧ ∀𝑥𝑃𝑦𝑃𝑧𝑃 ((𝑥 𝑦) = (𝑧 𝑧) → 𝑥 = 𝑦))))
18 df-trkgc 28324 . 2 TarskiGC = {𝑓[(Base‘𝑓) / 𝑝][(dist‘𝑓) / 𝑑](∀𝑥𝑝𝑦𝑝 (𝑥𝑑𝑦) = (𝑦𝑑𝑥) ∧ ∀𝑥𝑝𝑦𝑝𝑧𝑝 ((𝑥𝑑𝑦) = (𝑧𝑑𝑧) → 𝑥 = 𝑦))}
1917, 18elab4g 3669 1 (𝐺 ∈ TarskiGC ↔ (𝐺 ∈ V ∧ (∀𝑥𝑃𝑦𝑃 (𝑥 𝑦) = (𝑦 𝑥) ∧ ∀𝑥𝑃𝑦𝑃𝑧𝑃 ((𝑥 𝑦) = (𝑧 𝑧) → 𝑥 = 𝑦))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1533  wcel 2098  wral 3050  Vcvv 3461  [wsbc 3773  cfv 6549  (class class class)co 7419  Basecbs 17183  distcds 17245  TarskiGCcstrkgc 28304  Itvcitv 28309
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2696  ax-nul 5307
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2703  df-cleq 2717  df-clel 2802  df-ne 2930  df-ral 3051  df-rab 3419  df-v 3463  df-sbc 3774  df-dif 3947  df-un 3949  df-ss 3961  df-nul 4323  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-br 5150  df-iota 6501  df-fv 6557  df-ov 7422  df-trkgc 28324
This theorem is referenced by:  axtgcgrrflx  28338  axtgcgrid  28339  f1otrg  28747  xmstrkgc  28768  eengtrkg  28869
  Copyright terms: Public domain W3C validator
OSZAR »