Proof of Theorem istrkgl
Step | Hyp | Ref
| Expression |
1 | | istrkg.p |
. . . 4
⊢ 𝑃 = (Base‘𝐺) |
2 | | istrkg.i |
. . . 4
⊢ 𝐼 = (Itv‘𝐺) |
3 | | simpl 481 |
. . . . . 6
⊢ ((𝑝 = 𝑃 ∧ 𝑖 = 𝐼) → 𝑝 = 𝑃) |
4 | 3 | difeq1d 4118 |
. . . . . 6
⊢ ((𝑝 = 𝑃 ∧ 𝑖 = 𝐼) → (𝑝 ∖ {𝑥}) = (𝑃 ∖ {𝑥})) |
5 | | simpr 483 |
. . . . . . . . . 10
⊢ ((𝑝 = 𝑃 ∧ 𝑖 = 𝐼) → 𝑖 = 𝐼) |
6 | 5 | oveqd 7434 |
. . . . . . . . 9
⊢ ((𝑝 = 𝑃 ∧ 𝑖 = 𝐼) → (𝑥𝑖𝑦) = (𝑥𝐼𝑦)) |
7 | 6 | eleq2d 2811 |
. . . . . . . 8
⊢ ((𝑝 = 𝑃 ∧ 𝑖 = 𝐼) → (𝑧 ∈ (𝑥𝑖𝑦) ↔ 𝑧 ∈ (𝑥𝐼𝑦))) |
8 | 5 | oveqd 7434 |
. . . . . . . . 9
⊢ ((𝑝 = 𝑃 ∧ 𝑖 = 𝐼) → (𝑧𝑖𝑦) = (𝑧𝐼𝑦)) |
9 | 8 | eleq2d 2811 |
. . . . . . . 8
⊢ ((𝑝 = 𝑃 ∧ 𝑖 = 𝐼) → (𝑥 ∈ (𝑧𝑖𝑦) ↔ 𝑥 ∈ (𝑧𝐼𝑦))) |
10 | 5 | oveqd 7434 |
. . . . . . . . 9
⊢ ((𝑝 = 𝑃 ∧ 𝑖 = 𝐼) → (𝑥𝑖𝑧) = (𝑥𝐼𝑧)) |
11 | 10 | eleq2d 2811 |
. . . . . . . 8
⊢ ((𝑝 = 𝑃 ∧ 𝑖 = 𝐼) → (𝑦 ∈ (𝑥𝑖𝑧) ↔ 𝑦 ∈ (𝑥𝐼𝑧))) |
12 | 7, 9, 11 | 3orbi123d 1431 |
. . . . . . 7
⊢ ((𝑝 = 𝑃 ∧ 𝑖 = 𝐼) → ((𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧)) ↔ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))) |
13 | 3, 12 | rabeqbidv 3437 |
. . . . . 6
⊢ ((𝑝 = 𝑃 ∧ 𝑖 = 𝐼) → {𝑧 ∈ 𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))} = {𝑧 ∈ 𝑃 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))}) |
14 | 3, 4, 13 | mpoeq123dv 7493 |
. . . . 5
⊢ ((𝑝 = 𝑃 ∧ 𝑖 = 𝐼) → (𝑥 ∈ 𝑝, 𝑦 ∈ (𝑝 ∖ {𝑥}) ↦ {𝑧 ∈ 𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))}) = (𝑥 ∈ 𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑧 ∈ 𝑃 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))})) |
15 | 14 | eqeq2d 2736 |
. . . 4
⊢ ((𝑝 = 𝑃 ∧ 𝑖 = 𝐼) → ((LineG‘𝑓) = (𝑥 ∈ 𝑝, 𝑦 ∈ (𝑝 ∖ {𝑥}) ↦ {𝑧 ∈ 𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))}) ↔ (LineG‘𝑓) = (𝑥 ∈ 𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑧 ∈ 𝑃 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))}))) |
16 | 1, 2, 15 | sbcie2s 17130 |
. . 3
⊢ (𝑓 = 𝐺 → ([(Base‘𝑓) / 𝑝][(Itv‘𝑓) / 𝑖](LineG‘𝑓) = (𝑥 ∈ 𝑝, 𝑦 ∈ (𝑝 ∖ {𝑥}) ↦ {𝑧 ∈ 𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))}) ↔ (LineG‘𝑓) = (𝑥 ∈ 𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑧 ∈ 𝑃 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))}))) |
17 | | fveqeq2 6903 |
. . 3
⊢ (𝑓 = 𝐺 → ((LineG‘𝑓) = (𝑥 ∈ 𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑧 ∈ 𝑃 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))}) ↔ (LineG‘𝐺) = (𝑥 ∈ 𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑧 ∈ 𝑃 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))}))) |
18 | 16, 17 | bitrd 278 |
. 2
⊢ (𝑓 = 𝐺 → ([(Base‘𝑓) / 𝑝][(Itv‘𝑓) / 𝑖](LineG‘𝑓) = (𝑥 ∈ 𝑝, 𝑦 ∈ (𝑝 ∖ {𝑥}) ↦ {𝑧 ∈ 𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))}) ↔ (LineG‘𝐺) = (𝑥 ∈ 𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑧 ∈ 𝑃 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))}))) |
19 | | eqid 2725 |
. 2
⊢ {𝑓 ∣
[(Base‘𝑓) /
𝑝][(Itv‘𝑓) / 𝑖](LineG‘𝑓) = (𝑥 ∈ 𝑝, 𝑦 ∈ (𝑝 ∖ {𝑥}) ↦ {𝑧 ∈ 𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})} = {𝑓 ∣ [(Base‘𝑓) / 𝑝][(Itv‘𝑓) / 𝑖](LineG‘𝑓) = (𝑥 ∈ 𝑝, 𝑦 ∈ (𝑝 ∖ {𝑥}) ↦ {𝑧 ∈ 𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})} |
20 | 18, 19 | elab4g 3670 |
1
⊢ (𝐺 ∈ {𝑓 ∣ [(Base‘𝑓) / 𝑝][(Itv‘𝑓) / 𝑖](LineG‘𝑓) = (𝑥 ∈ 𝑝, 𝑦 ∈ (𝑝 ∖ {𝑥}) ↦ {𝑧 ∈ 𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})} ↔ (𝐺 ∈ V ∧ (LineG‘𝐺) = (𝑥 ∈ 𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑧 ∈ 𝑃 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))}))) |