![]() |
Metamath
Proof Explorer Theorem List (p. 476 of 483) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30721) |
![]() (30722-32244) |
![]() (32245-48210) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | lindslinindimp2lem4 47501* | Lemma 4 for lindslinindsimp2 47503. (Contributed by AV, 25-Apr-2019.) (Revised by AV, 30-Jul-2019.) (Proof shortened by II, 16-Feb-2023.) |
⊢ 𝑅 = (Scalar‘𝑀) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝑍 = (0g‘𝑀) & ⊢ 𝑌 = ((invg‘𝑅)‘(𝑓‘𝑥)) & ⊢ 𝐺 = (𝑓 ↾ (𝑆 ∖ {𝑥})) ⇒ ⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆) ∧ (𝑓 ∈ (𝐵 ↑m 𝑆) ∧ 𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍)) → (𝑀 Σg (𝑦 ∈ (𝑆 ∖ {𝑥}) ↦ ((𝑓‘𝑦)( ·𝑠 ‘𝑀)𝑦))) = (𝑌( ·𝑠 ‘𝑀)𝑥)) | ||
Theorem | lindslinindsimp2lem5 47502* | Lemma 5 for lindslinindsimp2 47503. (Contributed by AV, 25-Apr-2019.) (Revised by AV, 30-Jul-2019.) |
⊢ 𝑅 = (Scalar‘𝑀) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝑍 = (0g‘𝑀) ⇒ ⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆)) → ((𝑓 ∈ (𝐵 ↑m 𝑆) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍)) → (∀𝑦 ∈ (𝐵 ∖ { 0 })∀𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑥}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦( ·𝑠 ‘𝑀)𝑥) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑥}))) → (𝑓‘𝑥) = 0 ))) | ||
Theorem | lindslinindsimp2 47503* | Implication 2 for lindslininds 47504. (Contributed by AV, 26-Apr-2019.) (Revised by AV, 30-Jul-2019.) |
⊢ 𝑅 = (Scalar‘𝑀) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝑍 = (0g‘𝑀) ⇒ ⊢ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) → ((𝑆 ⊆ (Base‘𝑀) ∧ ∀𝑠 ∈ 𝑆 ∀𝑦 ∈ (𝐵 ∖ { 0 }) ¬ (𝑦( ·𝑠 ‘𝑀)𝑠) ∈ ((LSpan‘𝑀)‘(𝑆 ∖ {𝑠}))) → (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵 ↑m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 )))) | ||
Theorem | lindslininds 47504 | Equivalence of definitions df-linds 21734 and df-lininds 47482 for (linear) independence for (left) modules. (Contributed by AV, 26-Apr-2019.) (Proof shortened by AV, 30-Jul-2019.) |
⊢ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) → (𝑆 linIndS 𝑀 ↔ 𝑆 ∈ (LIndS‘𝑀))) | ||
Theorem | linds0 47505 | The empty set is always a linearly independent subset. (Contributed by AV, 13-Apr-2019.) (Revised by AV, 27-Apr-2019.) (Proof shortened by AV, 30-Jul-2019.) |
⊢ (𝑀 ∈ 𝑉 → ∅ linIndS 𝑀) | ||
Theorem | el0ldep 47506 | A set containing the zero element of a module is always linearly dependent, if the underlying ring has at least two elements. (Contributed by AV, 13-Apr-2019.) (Revised by AV, 27-Apr-2019.) (Proof shortened by AV, 30-Jul-2019.) |
⊢ (((𝑀 ∈ LMod ∧ 1 < (♯‘(Base‘(Scalar‘𝑀)))) ∧ 𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (0g‘𝑀) ∈ 𝑆) → 𝑆 linDepS 𝑀) | ||
Theorem | el0ldepsnzr 47507 | A set containing the zero element of a module over a nonzero ring is always linearly dependent. (Contributed by AV, 14-Apr-2019.) (Revised by AV, 27-Apr-2019.) |
⊢ (((𝑀 ∈ LMod ∧ (Scalar‘𝑀) ∈ NzRing) ∧ 𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (0g‘𝑀) ∈ 𝑆) → 𝑆 linDepS 𝑀) | ||
Theorem | lindsrng01 47508 | Any subset of a module is always linearly independent if the underlying ring has at most one element. Since the underlying ring cannot be the empty set (see lmodsn0 20750), this means that the underlying ring has only one element, so it is a zero ring. (Contributed by AV, 14-Apr-2019.) (Revised by AV, 27-Apr-2019.) |
⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑅 = (Scalar‘𝑀) & ⊢ 𝐸 = (Base‘𝑅) ⇒ ⊢ ((𝑀 ∈ LMod ∧ ((♯‘𝐸) = 0 ∨ (♯‘𝐸) = 1) ∧ 𝑆 ∈ 𝒫 𝐵) → 𝑆 linIndS 𝑀) | ||
Theorem | lindszr 47509 | Any subset of a module over a zero ring is always linearly independent. (Contributed by AV, 27-Apr-2019.) |
⊢ ((𝑀 ∈ LMod ∧ ¬ (Scalar‘𝑀) ∈ NzRing ∧ 𝑆 ∈ 𝒫 (Base‘𝑀)) → 𝑆 linIndS 𝑀) | ||
Theorem | snlindsntorlem 47510* | Lemma for snlindsntor 47511. (Contributed by AV, 15-Apr-2019.) |
⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑅 = (Scalar‘𝑀) & ⊢ 𝑆 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝑍 = (0g‘𝑀) & ⊢ · = ( ·𝑠 ‘𝑀) ⇒ ⊢ ((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵) → (∀𝑓 ∈ (𝑆 ↑m {𝑋})((𝑓( linC ‘𝑀){𝑋}) = 𝑍 → (𝑓‘𝑋) = 0 ) → ∀𝑠 ∈ 𝑆 ((𝑠 · 𝑋) = 𝑍 → 𝑠 = 0 ))) | ||
Theorem | snlindsntor 47511* | A singleton is linearly independent iff it does not contain a torsion element. According to Wikipedia ("Torsion (algebra)", 15-Apr-2019, https://en.wikipedia.org/wiki/Torsion_(algebra)): "An element m of a module M over a ring R is called a torsion element of the module if there exists a regular element r of the ring (an element that is neither a left nor a right zero divisor) that annihilates m, i.e., (𝑟 · 𝑚) = 0. In an integral domain (a commutative ring without zero divisors), every nonzero element is regular, so a torsion element of a module over an integral domain is one annihilated by a nonzero element of the integral domain." Analogously, the definition in [Lang] p. 147 states that "An element x of [a module] E [over a ring R] is called a torsion element if there exists 𝑎 ∈ 𝑅, 𝑎 ≠ 0, such that 𝑎 · 𝑥 = 0. This definition includes the zero element of the module. Some authors, however, exclude the zero element from the definition of torsion elements. (Contributed by AV, 14-Apr-2019.) (Revised by AV, 27-Apr-2019.) |
⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑅 = (Scalar‘𝑀) & ⊢ 𝑆 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝑍 = (0g‘𝑀) & ⊢ · = ( ·𝑠 ‘𝑀) ⇒ ⊢ ((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵) → (∀𝑠 ∈ (𝑆 ∖ { 0 })(𝑠 · 𝑋) ≠ 𝑍 ↔ {𝑋} linIndS 𝑀)) | ||
Theorem | ldepsprlem 47512 | Lemma for ldepspr 47513. (Contributed by AV, 16-Apr-2019.) |
⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑅 = (Scalar‘𝑀) & ⊢ 𝑆 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝑍 = (0g‘𝑀) & ⊢ · = ( ·𝑠 ‘𝑀) & ⊢ 1 = (1r‘𝑅) & ⊢ 𝑁 = (invg‘𝑅) ⇒ ⊢ ((𝑀 ∈ LMod ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝐴 ∈ 𝑆)) → (𝑋 = (𝐴 · 𝑌) → (( 1 · 𝑋)(+g‘𝑀)((𝑁‘𝐴) · 𝑌)) = 𝑍)) | ||
Theorem | ldepspr 47513 | If a vector is a scalar multiple of another vector, the (unordered pair containing the) two vectors are linearly dependent. (Contributed by AV, 16-Apr-2019.) (Revised by AV, 27-Apr-2019.) (Proof shortened by AV, 30-Jul-2019.) |
⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑅 = (Scalar‘𝑀) & ⊢ 𝑆 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝑍 = (0g‘𝑀) & ⊢ · = ( ·𝑠 ‘𝑀) ⇒ ⊢ ((𝑀 ∈ LMod ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ≠ 𝑌)) → ((𝐴 ∈ 𝑆 ∧ 𝑋 = (𝐴 · 𝑌)) → {𝑋, 𝑌} linDepS 𝑀)) | ||
Theorem | lincresunit3lem3 47514 | Lemma 3 for lincresunit3 47521. (Contributed by AV, 18-May-2019.) |
⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑅 = (Scalar‘𝑀) & ⊢ 𝐸 = (Base‘𝑅) & ⊢ 𝑈 = (Unit‘𝑅) & ⊢ 𝑁 = (invg‘𝑅) & ⊢ · = ( ·𝑠 ‘𝑀) ⇒ ⊢ (((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝐴 ∈ 𝑈) → (((𝑁‘𝐴) · 𝑋) = ((𝑁‘𝐴) · 𝑌) ↔ 𝑋 = 𝑌)) | ||
Theorem | lincresunitlem1 47515 | Lemma 1 for properties of a specially modified restriction of a linear combination containing a unit as scalar. (Contributed by AV, 18-May-2019.) |
⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑅 = (Scalar‘𝑀) & ⊢ 𝐸 = (Base‘𝑅) & ⊢ 𝑈 = (Unit‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝑍 = (0g‘𝑀) & ⊢ 𝑁 = (invg‘𝑅) & ⊢ 𝐼 = (invr‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 𝐺 = (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐼‘(𝑁‘(𝐹‘𝑋))) · (𝐹‘𝑠))) ⇒ ⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈)) → (𝐼‘(𝑁‘(𝐹‘𝑋))) ∈ 𝐸) | ||
Theorem | lincresunitlem2 47516 | Lemma for properties of a specially modified restriction of a linear combination containing a unit as scalar. (Contributed by AV, 18-May-2019.) |
⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑅 = (Scalar‘𝑀) & ⊢ 𝐸 = (Base‘𝑅) & ⊢ 𝑈 = (Unit‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝑍 = (0g‘𝑀) & ⊢ 𝑁 = (invg‘𝑅) & ⊢ 𝐼 = (invr‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 𝐺 = (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐼‘(𝑁‘(𝐹‘𝑋))) · (𝐹‘𝑠))) ⇒ ⊢ ((((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈)) ∧ 𝑌 ∈ 𝑆) → ((𝐼‘(𝑁‘(𝐹‘𝑋))) · (𝐹‘𝑌)) ∈ 𝐸) | ||
Theorem | lincresunit1 47517* | Property 1 of a specially modified restriction of a linear combination containing a unit as scalar. (Contributed by AV, 18-May-2019.) |
⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑅 = (Scalar‘𝑀) & ⊢ 𝐸 = (Base‘𝑅) & ⊢ 𝑈 = (Unit‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝑍 = (0g‘𝑀) & ⊢ 𝑁 = (invg‘𝑅) & ⊢ 𝐼 = (invr‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 𝐺 = (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐼‘(𝑁‘(𝐹‘𝑋))) · (𝐹‘𝑠))) ⇒ ⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈)) → 𝐺 ∈ (𝐸 ↑m (𝑆 ∖ {𝑋}))) | ||
Theorem | lincresunit2 47518* | Property 2 of a specially modified restriction of a linear combination containing a unit as scalar. (Contributed by AV, 18-May-2019.) |
⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑅 = (Scalar‘𝑀) & ⊢ 𝐸 = (Base‘𝑅) & ⊢ 𝑈 = (Unit‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝑍 = (0g‘𝑀) & ⊢ 𝑁 = (invg‘𝑅) & ⊢ 𝐼 = (invr‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 𝐺 = (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐼‘(𝑁‘(𝐹‘𝑋))) · (𝐹‘𝑠))) ⇒ ⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝐹 finSupp 0 )) → 𝐺 finSupp 0 ) | ||
Theorem | lincresunit3lem1 47519* | Lemma 1 for lincresunit3 47521. (Contributed by AV, 17-May-2019.) |
⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑅 = (Scalar‘𝑀) & ⊢ 𝐸 = (Base‘𝑅) & ⊢ 𝑈 = (Unit‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝑍 = (0g‘𝑀) & ⊢ 𝑁 = (invg‘𝑅) & ⊢ 𝐼 = (invr‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 𝐺 = (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐼‘(𝑁‘(𝐹‘𝑋))) · (𝐹‘𝑠))) ⇒ ⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝑧 ∈ (𝑆 ∖ {𝑋}))) → ((𝑁‘(𝐹‘𝑋))( ·𝑠 ‘𝑀)((𝐺‘𝑧)( ·𝑠 ‘𝑀)𝑧)) = ((𝐹‘𝑧)( ·𝑠 ‘𝑀)𝑧)) | ||
Theorem | lincresunit3lem2 47520* | Lemma 2 for lincresunit3 47521. (Contributed by AV, 18-May-2019.) (Proof shortened by AV, 30-Jul-2019.) |
⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑅 = (Scalar‘𝑀) & ⊢ 𝐸 = (Base‘𝑅) & ⊢ 𝑈 = (Unit‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝑍 = (0g‘𝑀) & ⊢ 𝑁 = (invg‘𝑅) & ⊢ 𝐼 = (invr‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 𝐺 = (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐼‘(𝑁‘(𝐹‘𝑋))) · (𝐹‘𝑠))) ⇒ ⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝐹 finSupp 0 )) → ((𝑁‘(𝐹‘𝑋))( ·𝑠 ‘𝑀)(𝑀 Σg (𝑧 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺‘𝑧)( ·𝑠 ‘𝑀)𝑧)))) = ((𝐹 ↾ (𝑆 ∖ {𝑋}))( linC ‘𝑀)(𝑆 ∖ {𝑋}))) | ||
Theorem | lincresunit3 47521* | Property 3 of a specially modified restriction of a linear combination in a vector space. (Contributed by AV, 18-May-2019.) (Proof shortened by AV, 30-Jul-2019.) |
⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑅 = (Scalar‘𝑀) & ⊢ 𝐸 = (Base‘𝑅) & ⊢ 𝑈 = (Unit‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝑍 = (0g‘𝑀) & ⊢ 𝑁 = (invg‘𝑅) & ⊢ 𝐼 = (invr‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 𝐺 = (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐼‘(𝑁‘(𝐹‘𝑋))) · (𝐹‘𝑠))) ⇒ ⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝐹 finSupp 0 ) ∧ (𝐹( linC ‘𝑀)𝑆) = 𝑍) → (𝐺( linC ‘𝑀)(𝑆 ∖ {𝑋})) = 𝑋) | ||
Theorem | lincreslvec3 47522* | Property 3 of a specially modified restriction of a linear combination in a vector space. (Contributed by AV, 18-May-2019.) (Proof shortened by AV, 30-Jul-2019.) |
⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑅 = (Scalar‘𝑀) & ⊢ 𝐸 = (Base‘𝑅) & ⊢ 𝑈 = (Unit‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝑍 = (0g‘𝑀) & ⊢ 𝑁 = (invg‘𝑅) & ⊢ 𝐼 = (invr‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 𝐺 = (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐼‘(𝑁‘(𝐹‘𝑋))) · (𝐹‘𝑠))) ⇒ ⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LVec ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ≠ 0 ∧ 𝐹 finSupp 0 ) ∧ (𝐹( linC ‘𝑀)𝑆) = 𝑍) → (𝐺( linC ‘𝑀)(𝑆 ∖ {𝑋})) = 𝑋) | ||
Theorem | islindeps2 47523* | Conditions for being a linearly dependent subset of a (left) module over a nonzero ring. (Contributed by AV, 29-Apr-2019.) (Proof shortened by AV, 30-Jul-2019.) |
⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑍 = (0g‘𝑀) & ⊢ 𝑅 = (Scalar‘𝑀) & ⊢ 𝐸 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵 ∧ 𝑅 ∈ NzRing) → (∃𝑠 ∈ 𝑆 ∃𝑓 ∈ (𝐸 ↑m (𝑆 ∖ {𝑠}))(𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠) → 𝑆 linDepS 𝑀)) | ||
Theorem | islininds2 47524* | Implication of being a linearly independent subset of a (left) module over a nonzero ring. (Contributed by AV, 29-Apr-2019.) (Proof shortened by AV, 30-Jul-2019.) |
⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑍 = (0g‘𝑀) & ⊢ 𝑅 = (Scalar‘𝑀) & ⊢ 𝐸 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵 ∧ 𝑅 ∈ NzRing) → (𝑆 linIndS 𝑀 → ∀𝑠 ∈ 𝑆 ∀𝑓 ∈ (𝐸 ↑m (𝑆 ∖ {𝑠}))(¬ 𝑓 finSupp 0 ∨ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) ≠ 𝑠))) | ||
Theorem | isldepslvec2 47525* | Alternative definition of being a linearly dependent subset of a (left) vector space. In this case, the reverse implication of islindeps2 47523 holds, so that both definitions are equivalent (see theorem 1.6 in [Roman] p. 46 and the note in [Roman] p. 112: if a nontrivial linear combination of elements (where not all of the coefficients are 0) in an R-vector space is 0, then and only then each of the elements is a linear combination of the others. (Contributed by AV, 30-Apr-2019.) (Proof shortened by AV, 30-Jul-2019.) |
⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑍 = (0g‘𝑀) & ⊢ 𝑅 = (Scalar‘𝑀) & ⊢ 𝐸 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ ((𝑀 ∈ LVec ∧ 𝑆 ∈ 𝒫 𝐵) → (∃𝑠 ∈ 𝑆 ∃𝑓 ∈ (𝐸 ↑m (𝑆 ∖ {𝑠}))(𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠) ↔ 𝑆 linDepS 𝑀)) | ||
Theorem | lindssnlvec 47526 | A singleton not containing the zero element of a vector space is always linearly independent. (Contributed by AV, 16-Apr-2019.) (Revised by AV, 28-Apr-2019.) |
⊢ ((𝑀 ∈ LVec ∧ 𝑆 ∈ (Base‘𝑀) ∧ 𝑆 ≠ (0g‘𝑀)) → {𝑆} linIndS 𝑀) | ||
Theorem | lmod1lem1 47527* | Lemma 1 for lmod1 47532. (Contributed by AV, 28-Apr-2019.) |
⊢ 𝑀 = ({〈(Base‘ndx), {𝐼}〉, 〈(+g‘ndx), {〈〈𝐼, 𝐼〉, 𝐼〉}〉, 〈(Scalar‘ndx), 𝑅〉} ∪ {〈( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ {𝐼} ↦ 𝑦)〉}) ⇒ ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring ∧ 𝑟 ∈ (Base‘𝑅)) → (𝑟( ·𝑠 ‘𝑀)𝐼) ∈ {𝐼}) | ||
Theorem | lmod1lem2 47528* | Lemma 2 for lmod1 47532. (Contributed by AV, 28-Apr-2019.) |
⊢ 𝑀 = ({〈(Base‘ndx), {𝐼}〉, 〈(+g‘ndx), {〈〈𝐼, 𝐼〉, 𝐼〉}〉, 〈(Scalar‘ndx), 𝑅〉} ∪ {〈( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ {𝐼} ↦ 𝑦)〉}) ⇒ ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring ∧ 𝑟 ∈ (Base‘𝑅)) → (𝑟( ·𝑠 ‘𝑀)(𝐼(+g‘𝑀)𝐼)) = ((𝑟( ·𝑠 ‘𝑀)𝐼)(+g‘𝑀)(𝑟( ·𝑠 ‘𝑀)𝐼))) | ||
Theorem | lmod1lem3 47529* | Lemma 3 for lmod1 47532. (Contributed by AV, 29-Apr-2019.) |
⊢ 𝑀 = ({〈(Base‘ndx), {𝐼}〉, 〈(+g‘ndx), {〈〈𝐼, 𝐼〉, 𝐼〉}〉, 〈(Scalar‘ndx), 𝑅〉} ∪ {〈( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ {𝐼} ↦ 𝑦)〉}) ⇒ ⊢ (((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring) ∧ (𝑞 ∈ (Base‘𝑅) ∧ 𝑟 ∈ (Base‘𝑅))) → ((𝑞(+g‘(Scalar‘𝑀))𝑟)( ·𝑠 ‘𝑀)𝐼) = ((𝑞( ·𝑠 ‘𝑀)𝐼)(+g‘𝑀)(𝑟( ·𝑠 ‘𝑀)𝐼))) | ||
Theorem | lmod1lem4 47530* | Lemma 4 for lmod1 47532. (Contributed by AV, 29-Apr-2019.) |
⊢ 𝑀 = ({〈(Base‘ndx), {𝐼}〉, 〈(+g‘ndx), {〈〈𝐼, 𝐼〉, 𝐼〉}〉, 〈(Scalar‘ndx), 𝑅〉} ∪ {〈( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ {𝐼} ↦ 𝑦)〉}) ⇒ ⊢ (((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring) ∧ (𝑞 ∈ (Base‘𝑅) ∧ 𝑟 ∈ (Base‘𝑅))) → ((𝑞(.r‘(Scalar‘𝑀))𝑟)( ·𝑠 ‘𝑀)𝐼) = (𝑞( ·𝑠 ‘𝑀)(𝑟( ·𝑠 ‘𝑀)𝐼))) | ||
Theorem | lmod1lem5 47531* | Lemma 5 for lmod1 47532. (Contributed by AV, 28-Apr-2019.) |
⊢ 𝑀 = ({〈(Base‘ndx), {𝐼}〉, 〈(+g‘ndx), {〈〈𝐼, 𝐼〉, 𝐼〉}〉, 〈(Scalar‘ndx), 𝑅〉} ∪ {〈( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ {𝐼} ↦ 𝑦)〉}) ⇒ ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring) → ((1r‘(Scalar‘𝑀))( ·𝑠 ‘𝑀)𝐼) = 𝐼) | ||
Theorem | lmod1 47532* | The (smallest) structure representing a zero module over an arbitrary ring. (Contributed by AV, 29-Apr-2019.) |
⊢ 𝑀 = ({〈(Base‘ndx), {𝐼}〉, 〈(+g‘ndx), {〈〈𝐼, 𝐼〉, 𝐼〉}〉, 〈(Scalar‘ndx), 𝑅〉} ∪ {〈( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ {𝐼} ↦ 𝑦)〉}) ⇒ ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring) → 𝑀 ∈ LMod) | ||
Theorem | lmod1zr 47533 | The (smallest) structure representing a zero module over a zero ring. (Contributed by AV, 29-Apr-2019.) |
⊢ 𝑅 = {〈(Base‘ndx), {𝑍}〉, 〈(+g‘ndx), {〈〈𝑍, 𝑍〉, 𝑍〉}〉, 〈(.r‘ndx), {〈〈𝑍, 𝑍〉, 𝑍〉}〉} & ⊢ 𝑀 = ({〈(Base‘ndx), {𝐼}〉, 〈(+g‘ndx), {〈〈𝐼, 𝐼〉, 𝐼〉}〉, 〈(Scalar‘ndx), 𝑅〉} ∪ {〈( ·𝑠 ‘ndx), {〈〈𝑍, 𝐼〉, 𝐼〉}〉}) ⇒ ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → 𝑀 ∈ LMod) | ||
Theorem | lmod1zrnlvec 47534 | There is a (left) module (a zero module) which is not a (left) vector space. (Contributed by AV, 29-Apr-2019.) |
⊢ 𝑅 = {〈(Base‘ndx), {𝑍}〉, 〈(+g‘ndx), {〈〈𝑍, 𝑍〉, 𝑍〉}〉, 〈(.r‘ndx), {〈〈𝑍, 𝑍〉, 𝑍〉}〉} & ⊢ 𝑀 = ({〈(Base‘ndx), {𝐼}〉, 〈(+g‘ndx), {〈〈𝐼, 𝐼〉, 𝐼〉}〉, 〈(Scalar‘ndx), 𝑅〉} ∪ {〈( ·𝑠 ‘ndx), {〈〈𝑍, 𝐼〉, 𝐼〉}〉}) ⇒ ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → 𝑀 ∉ LVec) | ||
Theorem | lmodn0 47535 | Left modules exist. (Contributed by AV, 29-Apr-2019.) |
⊢ LMod ≠ ∅ | ||
Theorem | zlmodzxzequa 47536 | Example of an equation within the ℤ-module ℤ × ℤ (see example in [Roman] p. 112 for a linearly dependent set). (Contributed by AV, 22-May-2019.) (Revised by AV, 10-Jun-2019.) |
⊢ 𝑍 = (ℤring freeLMod {0, 1}) & ⊢ 0 = {〈0, 0〉, 〈1, 0〉} & ⊢ ∙ = ( ·𝑠 ‘𝑍) & ⊢ − = (-g‘𝑍) & ⊢ 𝐴 = {〈0, 3〉, 〈1, 6〉} & ⊢ 𝐵 = {〈0, 2〉, 〈1, 4〉} ⇒ ⊢ ((2 ∙ 𝐴) − (3 ∙ 𝐵)) = 0 | ||
Theorem | zlmodzxznm 47537 | Example of a linearly dependent set whose elements are not linear combinations of the others, see note in [Roman] p. 112). (Contributed by AV, 23-May-2019.) (Revised by AV, 10-Jun-2019.) |
⊢ 𝑍 = (ℤring freeLMod {0, 1}) & ⊢ 0 = {〈0, 0〉, 〈1, 0〉} & ⊢ ∙ = ( ·𝑠 ‘𝑍) & ⊢ − = (-g‘𝑍) & ⊢ 𝐴 = {〈0, 3〉, 〈1, 6〉} & ⊢ 𝐵 = {〈0, 2〉, 〈1, 4〉} ⇒ ⊢ ∀𝑖 ∈ ℤ ((𝑖 ∙ 𝐴) ≠ 𝐵 ∧ (𝑖 ∙ 𝐵) ≠ 𝐴) | ||
Theorem | zlmodzxzldeplem 47538 | A and B are not equal. (Contributed by AV, 24-May-2019.) (Revised by AV, 10-Jun-2019.) |
⊢ 𝑍 = (ℤring freeLMod {0, 1}) & ⊢ 𝐴 = {〈0, 3〉, 〈1, 6〉} & ⊢ 𝐵 = {〈0, 2〉, 〈1, 4〉} ⇒ ⊢ 𝐴 ≠ 𝐵 | ||
Theorem | zlmodzxzequap 47539 | Example of an equation within the ℤ-module ℤ × ℤ (see example in [Roman] p. 112 for a linearly dependent set), written as a sum. (Contributed by AV, 24-May-2019.) (Revised by AV, 10-Jun-2019.) |
⊢ 𝑍 = (ℤring freeLMod {0, 1}) & ⊢ 𝐴 = {〈0, 3〉, 〈1, 6〉} & ⊢ 𝐵 = {〈0, 2〉, 〈1, 4〉} & ⊢ 0 = {〈0, 0〉, 〈1, 0〉} & ⊢ + = (+g‘𝑍) & ⊢ ∙ = ( ·𝑠 ‘𝑍) ⇒ ⊢ ((2 ∙ 𝐴) + (-3 ∙ 𝐵)) = 0 | ||
Theorem | zlmodzxzldeplem1 47540 | Lemma 1 for zlmodzxzldep 47544. (Contributed by AV, 24-May-2019.) (Revised by AV, 10-Jun-2019.) |
⊢ 𝑍 = (ℤring freeLMod {0, 1}) & ⊢ 𝐴 = {〈0, 3〉, 〈1, 6〉} & ⊢ 𝐵 = {〈0, 2〉, 〈1, 4〉} & ⊢ 𝐹 = {〈𝐴, 2〉, 〈𝐵, -3〉} ⇒ ⊢ 𝐹 ∈ (ℤ ↑m {𝐴, 𝐵}) | ||
Theorem | zlmodzxzldeplem2 47541 | Lemma 2 for zlmodzxzldep 47544. (Contributed by AV, 24-May-2019.) (Revised by AV, 30-Jul-2019.) |
⊢ 𝑍 = (ℤring freeLMod {0, 1}) & ⊢ 𝐴 = {〈0, 3〉, 〈1, 6〉} & ⊢ 𝐵 = {〈0, 2〉, 〈1, 4〉} & ⊢ 𝐹 = {〈𝐴, 2〉, 〈𝐵, -3〉} ⇒ ⊢ 𝐹 finSupp 0 | ||
Theorem | zlmodzxzldeplem3 47542 | Lemma 3 for zlmodzxzldep 47544. (Contributed by AV, 24-May-2019.) (Revised by AV, 10-Jun-2019.) |
⊢ 𝑍 = (ℤring freeLMod {0, 1}) & ⊢ 𝐴 = {〈0, 3〉, 〈1, 6〉} & ⊢ 𝐵 = {〈0, 2〉, 〈1, 4〉} & ⊢ 𝐹 = {〈𝐴, 2〉, 〈𝐵, -3〉} ⇒ ⊢ (𝐹( linC ‘𝑍){𝐴, 𝐵}) = (0g‘𝑍) | ||
Theorem | zlmodzxzldeplem4 47543* | Lemma 4 for zlmodzxzldep 47544. (Contributed by AV, 24-May-2019.) (Revised by AV, 10-Jun-2019.) |
⊢ 𝑍 = (ℤring freeLMod {0, 1}) & ⊢ 𝐴 = {〈0, 3〉, 〈1, 6〉} & ⊢ 𝐵 = {〈0, 2〉, 〈1, 4〉} & ⊢ 𝐹 = {〈𝐴, 2〉, 〈𝐵, -3〉} ⇒ ⊢ ∃𝑦 ∈ {𝐴, 𝐵} (𝐹‘𝑦) ≠ 0 | ||
Theorem | zlmodzxzldep 47544 | { A , B } is a linearly dependent set within the ℤ-module ℤ × ℤ (see example in [Roman] p. 112). (Contributed by AV, 22-May-2019.) (Revised by AV, 10-Jun-2019.) |
⊢ 𝑍 = (ℤring freeLMod {0, 1}) & ⊢ 𝐴 = {〈0, 3〉, 〈1, 6〉} & ⊢ 𝐵 = {〈0, 2〉, 〈1, 4〉} ⇒ ⊢ {𝐴, 𝐵} linDepS 𝑍 | ||
Theorem | ldepsnlinclem1 47545 | Lemma 1 for ldepsnlinc 47548. (Contributed by AV, 25-May-2019.) (Revised by AV, 10-Jun-2019.) |
⊢ 𝑍 = (ℤring freeLMod {0, 1}) & ⊢ 𝐴 = {〈0, 3〉, 〈1, 6〉} & ⊢ 𝐵 = {〈0, 2〉, 〈1, 4〉} ⇒ ⊢ (𝐹 ∈ ((Base‘ℤring) ↑m {𝐵}) → (𝐹( linC ‘𝑍){𝐵}) ≠ 𝐴) | ||
Theorem | ldepsnlinclem2 47546 | Lemma 2 for ldepsnlinc 47548. (Contributed by AV, 25-May-2019.) (Revised by AV, 10-Jun-2019.) |
⊢ 𝑍 = (ℤring freeLMod {0, 1}) & ⊢ 𝐴 = {〈0, 3〉, 〈1, 6〉} & ⊢ 𝐵 = {〈0, 2〉, 〈1, 4〉} ⇒ ⊢ (𝐹 ∈ ((Base‘ℤring) ↑m {𝐴}) → (𝐹( linC ‘𝑍){𝐴}) ≠ 𝐵) | ||
Theorem | lvecpsslmod 47547 | The class of all (left) vector spaces is a proper subclass of the class of all (left) modules. Although it is obvious (and proven by lveclmod 20984) that every left vector space is a left module, there is (at least) one left module which is no left vector space, for example the zero module over the zero ring, see lmod1zrnlvec 47534. (Contributed by AV, 29-Apr-2019.) |
⊢ LVec ⊊ LMod | ||
Theorem | ldepsnlinc 47548* | The reverse implication of islindeps2 47523 does not hold for arbitrary (left) modules, see note in [Roman] p. 112: "... if a nontrivial linear combination of the elements ... in an R-module M is 0, ... where not all of the coefficients are 0, then we cannot conclude ... that one of the elements ... is a linear combination of the others." This means that there is at least one left module having a linearly dependent subset in which there is at least one element which is not a linear combinantion of the other elements of this subset. Such a left module can be constructed by using zlmodzxzequa 47536 and zlmodzxznm 47537. (Contributed by AV, 25-May-2019.) (Revised by AV, 30-Jul-2019.) |
⊢ ∃𝑚 ∈ LMod ∃𝑠 ∈ 𝒫 (Base‘𝑚)(𝑠 linDepS 𝑚 ∧ ∀𝑣 ∈ 𝑠 ∀𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑m (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) → (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) ≠ 𝑣)) | ||
Theorem | ldepslinc 47549* | For (left) vector spaces, isldepslvec2 47525 provides an alternative definition of being a linearly dependent subset, whereas ldepsnlinc 47548 indicates that there is not an analogous alternative definition for arbitrary (left) modules. (Contributed by AV, 25-May-2019.) (Revised by AV, 30-Jul-2019.) |
⊢ (∀𝑚 ∈ LVec ∀𝑠 ∈ 𝒫 (Base‘𝑚)(𝑠 linDepS 𝑚 ↔ ∃𝑣 ∈ 𝑠 ∃𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑m (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) = 𝑣)) ∧ ¬ ∀𝑚 ∈ LMod ∀𝑠 ∈ 𝒫 (Base‘𝑚)(𝑠 linDepS 𝑚 ↔ ∃𝑣 ∈ 𝑠 ∃𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑m (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) = 𝑣))) | ||
Theorem | suppdm 47550 | If the range of a function does not contain the zero, the support of the function equals its domain. (Contributed by AV, 20-May-2020.) |
⊢ (((Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) ∧ 𝑍 ∉ ran 𝐹) → (𝐹 supp 𝑍) = dom 𝐹) | ||
Theorem | eluz2cnn0n1 47551 | An integer greater than 1 is a complex number not equal to 0 or 1. (Contributed by AV, 23-May-2020.) |
⊢ (𝐵 ∈ (ℤ≥‘2) → 𝐵 ∈ (ℂ ∖ {0, 1})) | ||
Theorem | divge1b 47552 | The ratio of a real number to a positive real number is greater than or equal to 1 iff the divisor (the positive real number) is less than or equal to the dividend (the real number). (Contributed by AV, 26-May-2020.) |
⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 ↔ 1 ≤ (𝐵 / 𝐴))) | ||
Theorem | divgt1b 47553 | The ratio of a real number to a positive real number is greater than 1 iff the divisor (the positive real number) is less than the dividend (the real number). (Contributed by AV, 30-May-2020.) |
⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ 1 < (𝐵 / 𝐴))) | ||
Theorem | ltsubaddb 47554 | Equivalence for the "less than" relation between differences and sums. (Contributed by AV, 6-Jun-2020.) |
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((𝐴 − 𝐶) < (𝐵 − 𝐷) ↔ (𝐴 + 𝐷) < (𝐵 + 𝐶))) | ||
Theorem | ltsubsubb 47555 | Equivalence for the "less than" relation between differences. (Contributed by AV, 6-Jun-2020.) |
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((𝐴 − 𝐶) < (𝐵 − 𝐷) ↔ (𝐴 − 𝐵) < (𝐶 − 𝐷))) | ||
Theorem | ltsubadd2b 47556 | Equivalence for the "less than" relation between differences and sums. (Contributed by AV, 6-Jun-2020.) |
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((𝐷 − 𝐶) < (𝐵 − 𝐴) ↔ (𝐴 + 𝐷) < (𝐵 + 𝐶))) | ||
Theorem | divsub1dir 47557 | Distribution of division over subtraction by 1. (Contributed by AV, 6-Jun-2020.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → ((𝐴 / 𝐵) − 1) = ((𝐴 − 𝐵) / 𝐵)) | ||
Theorem | expnegico01 47558 | An integer greater than 1 to the power of a negative integer is in the closed-below, open-above interval between 0 and 1. (Contributed by AV, 24-May-2020.) |
⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ ∧ 𝑁 < 0) → (𝐵↑𝑁) ∈ (0[,)1)) | ||
Theorem | elfzolborelfzop1 47559 | An element of a half-open integer interval is either equal to the left bound of the interval or an element of a half-open integer interval with a lower bound increased by 1. (Contributed by AV, 2-Jun-2020.) |
⊢ (𝐾 ∈ (𝑀..^𝑁) → (𝐾 = 𝑀 ∨ 𝐾 ∈ ((𝑀 + 1)..^𝑁))) | ||
Theorem | pw2m1lepw2m1 47560 | 2 to the power of a positive integer decreased by 1 is less than or equal to 2 to the power of the integer minus 1. (Contributed by AV, 30-May-2020.) |
⊢ (𝐼 ∈ ℕ → (2↑(𝐼 − 1)) ≤ ((2↑𝐼) − 1)) | ||
Theorem | zgtp1leeq 47561 | If an integer is between another integer and its predecessor, the integer is equal to the other integer. (Contributed by AV, 7-Jun-2020.) |
⊢ ((𝐼 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (((𝐴 − 1) < 𝐼 ∧ 𝐼 ≤ 𝐴) → 𝐼 = 𝐴)) | ||
Theorem | flsubz 47562 | An integer can be moved in and out of the floor of a difference. (Contributed by AV, 29-May-2020.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) → (⌊‘(𝐴 − 𝑁)) = ((⌊‘𝐴) − 𝑁)) | ||
Theorem | fldivmod 47563 | Expressing the floor of a division by the modulo operator. (Contributed by AV, 6-Jun-2020.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (⌊‘(𝐴 / 𝐵)) = ((𝐴 − (𝐴 mod 𝐵)) / 𝐵)) | ||
Theorem | mod0mul 47564* | If an integer is 0 modulo a positive integer, this integer must be the product of another integer and the modulus. (Contributed by AV, 7-Jun-2020.) |
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝐴 mod 𝑁) = 0 → ∃𝑥 ∈ ℤ 𝐴 = (𝑥 · 𝑁))) | ||
Theorem | modn0mul 47565* | If an integer is not 0 modulo a positive integer, this integer must be the sum of the product of another integer and the modulus and a positive integer less than the modulus. (Contributed by AV, 7-Jun-2020.) |
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝐴 mod 𝑁) ≠ 0 → ∃𝑥 ∈ ℤ ∃𝑦 ∈ (1..^𝑁)𝐴 = ((𝑥 · 𝑁) + 𝑦))) | ||
Theorem | m1modmmod 47566 | An integer decreased by 1 modulo a positive integer minus the integer modulo the same modulus is either -1 or the modulus minus 1. (Contributed by AV, 7-Jun-2020.) |
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (((𝐴 − 1) mod 𝑁) − (𝐴 mod 𝑁)) = if((𝐴 mod 𝑁) = 0, (𝑁 − 1), -1)) | ||
Theorem | difmodm1lt 47567 | The difference between an integer modulo a positive integer and the integer decreased by 1 modulo the same modulus is less than the modulus decreased by 1 (if the modulus is greater than 2). This theorem would not be valid for an odd 𝐴 and 𝑁 = 2, since ((𝐴 mod 𝑁) − ((𝐴 − 1) mod 𝑁)) would be (1 − 0) = 1 which is not less than (𝑁 − 1) = 1. (Contributed by AV, 6-Jun-2012.) |
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 2 < 𝑁) → ((𝐴 mod 𝑁) − ((𝐴 − 1) mod 𝑁)) < (𝑁 − 1)) | ||
Theorem | nn0onn0ex 47568* | For each odd nonnegative integer there is a nonnegative integer which, multiplied by 2 and increased by 1, results in the odd nonnegative integer. (Contributed by AV, 30-May-2020.) |
⊢ ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → ∃𝑚 ∈ ℕ0 𝑁 = ((2 · 𝑚) + 1)) | ||
Theorem | nn0enn0ex 47569* | For each even nonnegative integer there is a nonnegative integer which, multiplied by 2, results in the even nonnegative integer. (Contributed by AV, 30-May-2020.) |
⊢ ((𝑁 ∈ ℕ0 ∧ (𝑁 / 2) ∈ ℕ0) → ∃𝑚 ∈ ℕ0 𝑁 = (2 · 𝑚)) | ||
Theorem | nnennex 47570* | For each even positive integer there is a positive integer which, multiplied by 2, results in the even positive integer. (Contributed by AV, 5-Jun-2023.) |
⊢ ((𝑁 ∈ ℕ ∧ (𝑁 / 2) ∈ ℕ) → ∃𝑚 ∈ ℕ 𝑁 = (2 · 𝑚)) | ||
Theorem | nneop 47571 | A positive integer is even or odd. (Contributed by AV, 30-May-2020.) |
⊢ (𝑁 ∈ ℕ → ((𝑁 / 2) ∈ ℕ ∨ ((𝑁 + 1) / 2) ∈ ℕ)) | ||
Theorem | nneom 47572 | A positive integer is even or odd. (Contributed by AV, 30-May-2020.) |
⊢ (𝑁 ∈ ℕ → ((𝑁 / 2) ∈ ℕ ∨ ((𝑁 − 1) / 2) ∈ ℕ0)) | ||
Theorem | nn0eo 47573 | A nonnegative integer is even or odd. (Contributed by AV, 27-May-2020.) |
⊢ (𝑁 ∈ ℕ0 → ((𝑁 / 2) ∈ ℕ0 ∨ ((𝑁 + 1) / 2) ∈ ℕ0)) | ||
Theorem | nnpw2even 47574 | 2 to the power of a positive integer is even. (Contributed by AV, 2-Jun-2020.) |
⊢ (𝑁 ∈ ℕ → ((2↑𝑁) / 2) ∈ ℕ) | ||
Theorem | zefldiv2 47575 | The floor of an even integer divided by 2 is equal to the integer divided by 2. (Contributed by AV, 7-Jun-2020.) |
⊢ ((𝑁 ∈ ℤ ∧ (𝑁 / 2) ∈ ℤ) → (⌊‘(𝑁 / 2)) = (𝑁 / 2)) | ||
Theorem | zofldiv2 47576 | The floor of an odd integer divided by 2 is equal to the integer first decreased by 1 and then divided by 2. (Contributed by AV, 7-Jun-2020.) |
⊢ ((𝑁 ∈ ℤ ∧ ((𝑁 + 1) / 2) ∈ ℤ) → (⌊‘(𝑁 / 2)) = ((𝑁 − 1) / 2)) | ||
Theorem | nn0ofldiv2 47577 | The floor of an odd nonnegative integer divided by 2 is equal to the integer first decreased by 1 and then divided by 2. (Contributed by AV, 1-Jun-2020.) (Proof shortened by AV, 7-Jun-2020.) |
⊢ ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (⌊‘(𝑁 / 2)) = ((𝑁 − 1) / 2)) | ||
Theorem | flnn0div2ge 47578 | The floor of a positive integer divided by 2 is greater than or equal to the integer decreased by 1 and then divided by 2. (Contributed by AV, 1-Jun-2020.) |
⊢ (𝑁 ∈ ℕ0 → ((𝑁 − 1) / 2) ≤ (⌊‘(𝑁 / 2))) | ||
Theorem | flnn0ohalf 47579 | The floor of the half of an odd positive integer is equal to the floor of the half of the integer decreased by 1. (Contributed by AV, 5-Jun-2012.) |
⊢ ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (⌊‘(𝑁 / 2)) = (⌊‘((𝑁 − 1) / 2))) | ||
Theorem | logcxp0 47580 | Logarithm of a complex power. Generalization of logcxp 26596. (Contributed by AV, 22-May-2020.) |
⊢ ((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℂ ∧ (𝐵 · (log‘𝐴)) ∈ ran log) → (log‘(𝐴↑𝑐𝐵)) = (𝐵 · (log‘𝐴))) | ||
Theorem | regt1loggt0 47581 | The natural logarithm for a real number greater than 1 is greater than 0. (Contributed by AV, 25-May-2020.) |
⊢ (𝐵 ∈ (1(,)+∞) → 0 < (log‘𝐵)) | ||
Syntax | cfdiv 47582 | Extend class notation with the division operator of two functions. |
class /f | ||
Definition | df-fdiv 47583* | Define the division of two functions into the complex numbers. (Contributed by AV, 15-May-2020.) |
⊢ /f = (𝑓 ∈ V, 𝑔 ∈ V ↦ ((𝑓 ∘f / 𝑔) ↾ (𝑔 supp 0))) | ||
Theorem | fdivval 47584 | The quotient of two functions into the complex numbers. (Contributed by AV, 15-May-2020.) |
⊢ ((𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊) → (𝐹 /f 𝐺) = ((𝐹 ∘f / 𝐺) ↾ (𝐺 supp 0))) | ||
Theorem | fdivmpt 47585* | The quotient of two functions into the complex numbers as mapping. (Contributed by AV, 16-May-2020.) |
⊢ ((𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ ∧ 𝐴 ∈ 𝑉) → (𝐹 /f 𝐺) = (𝑥 ∈ (𝐺 supp 0) ↦ ((𝐹‘𝑥) / (𝐺‘𝑥)))) | ||
Theorem | fdivmptf 47586 | The quotient of two functions into the complex numbers is a function into the complex numbers. (Contributed by AV, 16-May-2020.) |
⊢ ((𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ ∧ 𝐴 ∈ 𝑉) → (𝐹 /f 𝐺):(𝐺 supp 0)⟶ℂ) | ||
Theorem | refdivmptf 47587 | The quotient of two functions into the real numbers is a function into the real numbers. (Contributed by AV, 16-May-2020.) |
⊢ ((𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ ∧ 𝐴 ∈ 𝑉) → (𝐹 /f 𝐺):(𝐺 supp 0)⟶ℝ) | ||
Theorem | fdivpm 47588 | The quotient of two functions into the complex numbers is a partial function. (Contributed by AV, 16-May-2020.) |
⊢ ((𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ ∧ 𝐴 ∈ 𝑉) → (𝐹 /f 𝐺) ∈ (ℂ ↑pm 𝐴)) | ||
Theorem | refdivpm 47589 | The quotient of two functions into the real numbers is a partial function. (Contributed by AV, 16-May-2020.) |
⊢ ((𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ ∧ 𝐴 ∈ 𝑉) → (𝐹 /f 𝐺) ∈ (ℝ ↑pm 𝐴)) | ||
Theorem | fdivmptfv 47590 | The function value of a quotient of two functions into the complex numbers. (Contributed by AV, 19-May-2020.) |
⊢ (((𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ ∧ 𝐴 ∈ 𝑉) ∧ 𝑋 ∈ (𝐺 supp 0)) → ((𝐹 /f 𝐺)‘𝑋) = ((𝐹‘𝑋) / (𝐺‘𝑋))) | ||
Theorem | refdivmptfv 47591 | The function value of a quotient of two functions into the real numbers. (Contributed by AV, 19-May-2020.) |
⊢ (((𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ ∧ 𝐴 ∈ 𝑉) ∧ 𝑋 ∈ (𝐺 supp 0)) → ((𝐹 /f 𝐺)‘𝑋) = ((𝐹‘𝑋) / (𝐺‘𝑋))) | ||
Syntax | cbigo 47592 | Extend class notation with the class of the "big-O" function. |
class Ο | ||
Definition | df-bigo 47593* | Define the function "big-O", mapping a real function g to the set of real functions "of order g(x)". Definition in section 1.1 of [AhoHopUll] p. 2. This is a generalization of "big-O of one", see df-o1 15460 and df-lo1 15461. As explained in the comment of df-o1 , any big-O can be represented in terms of 𝑂(1) and division, see elbigolo1 47602. (Contributed by AV, 15-May-2020.) |
⊢ Ο = (𝑔 ∈ (ℝ ↑pm ℝ) ↦ {𝑓 ∈ (ℝ ↑pm ℝ) ∣ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝑓 ∩ (𝑥[,)+∞))(𝑓‘𝑦) ≤ (𝑚 · (𝑔‘𝑦))}) | ||
Theorem | bigoval 47594* | Set of functions of order G(x). (Contributed by AV, 15-May-2020.) |
⊢ (𝐺 ∈ (ℝ ↑pm ℝ) → (Ο‘𝐺) = {𝑓 ∈ (ℝ ↑pm ℝ) ∣ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝑓 ∩ (𝑥[,)+∞))(𝑓‘𝑦) ≤ (𝑚 · (𝐺‘𝑦))}) | ||
Theorem | elbigofrcl 47595 | Reverse closure of the "big-O" function. (Contributed by AV, 16-May-2020.) |
⊢ (𝐹 ∈ (Ο‘𝐺) → 𝐺 ∈ (ℝ ↑pm ℝ)) | ||
Theorem | elbigo 47596* | Properties of a function of order G(x). (Contributed by AV, 16-May-2020.) |
⊢ (𝐹 ∈ (Ο‘𝐺) ↔ (𝐹 ∈ (ℝ ↑pm ℝ) ∧ 𝐺 ∈ (ℝ ↑pm ℝ) ∧ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝐹 ∩ (𝑥[,)+∞))(𝐹‘𝑦) ≤ (𝑚 · (𝐺‘𝑦)))) | ||
Theorem | elbigo2 47597* | Properties of a function of order G(x) under certain assumptions. (Contributed by AV, 17-May-2020.) |
⊢ (((𝐺:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ (𝐹:𝐵⟶ℝ ∧ 𝐵 ⊆ 𝐴)) → (𝐹 ∈ (Ο‘𝐺) ↔ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑦 → (𝐹‘𝑦) ≤ (𝑚 · (𝐺‘𝑦))))) | ||
Theorem | elbigo2r 47598* | Sufficient condition for a function to be of order G(x). (Contributed by AV, 18-May-2020.) |
⊢ (((𝐺:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ (𝐹:𝐵⟶ℝ ∧ 𝐵 ⊆ 𝐴) ∧ (𝐶 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ ∀𝑥 ∈ 𝐵 (𝐶 ≤ 𝑥 → (𝐹‘𝑥) ≤ (𝑀 · (𝐺‘𝑥))))) → 𝐹 ∈ (Ο‘𝐺)) | ||
Theorem | elbigof 47599 | A function of order G(x) is a function. (Contributed by AV, 18-May-2020.) |
⊢ (𝐹 ∈ (Ο‘𝐺) → 𝐹:dom 𝐹⟶ℝ) | ||
Theorem | elbigodm 47600 | The domain of a function of order G(x) is a subset of the reals. (Contributed by AV, 18-May-2020.) |
⊢ (𝐹 ∈ (Ο‘𝐺) → dom 𝐹 ⊆ ℝ) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |