HomeHome Metamath Proof Explorer
Theorem List (p. 444 of 483)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-30721)
  Hilbert Space Explorer  Hilbert Space Explorer
(30722-32244)
  Users' Mathboxes  Users' Mathboxes
(32245-48210)
 

Theorem List for Metamath Proof Explorer - 44301-44400   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
TheoremonfrALTlem1VD 44301* Virtual deduction proof of onfrALTlem1 43959. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. onfrALTlem1 43959 is onfrALTlem1VD 44301 without virtual deductions and was automatically derived from onfrALTlem1VD 44301.
1:: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥𝑎 (𝑎𝑥) = ∅)   ▶   (𝑥𝑎 ∧ (𝑎𝑥) = ∅)   )
2:1: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥𝑎 (𝑎𝑥) = ∅)   ▶   𝑥(𝑥𝑎 ∧ (𝑎𝑥) = ∅)   )
3:2: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥𝑎 (𝑎𝑥) = ∅)   ▶   𝑦[𝑦 / 𝑥](𝑥𝑎 ∧ (𝑎𝑥) = ∅)    )
4:: ([𝑦 / 𝑥](𝑥𝑎 ∧ (𝑎𝑥) = ∅ ) ↔ (𝑦𝑎 ∧ (𝑎𝑦) = ∅))
5:4: 𝑦([𝑦 / 𝑥](𝑥𝑎 ∧ (𝑎𝑥) = ∅) ↔ (𝑦𝑎 ∧ (𝑎𝑦) = ∅))
6:5: (∃𝑦[𝑦 / 𝑥](𝑥𝑎 ∧ (𝑎𝑥) = ∅) ↔ ∃𝑦(𝑦𝑎 ∧ (𝑎𝑦) = ∅))
7:3,6: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥𝑎 (𝑎𝑥) = ∅)   ▶   𝑦(𝑦𝑎 ∧ (𝑎𝑦) = ∅)   )
8:: (∃𝑦𝑎(𝑎𝑦) = ∅ ↔ ∃𝑦( 𝑦𝑎 ∧ (𝑎𝑦) = ∅))
qed:7,8: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥𝑎 (𝑎𝑥) = ∅)   ▶   𝑦𝑎(𝑎𝑦) = ∅   )
(Contributed by Alan Sare, 22-Jul-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
(   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥𝑎 ∧ (𝑎𝑥) = ∅)   ▶   𝑦𝑎 (𝑎𝑦) = ∅   )
 
TheoremonfrALTVD 44302 Virtual deduction proof of onfrALT 43960. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. onfrALT 43960 is onfrALTVD 44302 without virtual deductions and was automatically derived from onfrALTVD 44302.
1:: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ▶   𝑦𝑎(𝑎𝑦) = ∅   )
2:: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥𝑎 ∧ (𝑎𝑥) = ∅)   ▶   𝑦𝑎(𝑎𝑦) = ∅   )
3:1: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   𝑥𝑎   ▶    (¬ (𝑎𝑥) = ∅ → ∃𝑦𝑎(𝑎𝑦) = ∅)   )
4:2: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   𝑥𝑎   ▶    ((𝑎𝑥) = ∅ → ∃𝑦𝑎(𝑎𝑦) = ∅)   )
5:: ((𝑎𝑥) = ∅ ∨ ¬ (𝑎𝑥) = ∅)
6:5,4,3: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   𝑥𝑎   ▶    𝑦𝑎(𝑎𝑦) = ∅   )
7:6: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ▶   (𝑥𝑎 → ∃𝑦𝑎(𝑎𝑦) = ∅)   )
8:7: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ▶   𝑥(𝑥 𝑎 → ∃𝑦𝑎(𝑎𝑦) = ∅)   )
9:8: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ▶   (∃𝑥𝑥 𝑎 → ∃𝑦𝑎(𝑎𝑦) = ∅)   )
10:: (𝑎 ≠ ∅ ↔ ∃𝑥𝑥𝑎)
11:9,10: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ▶   (𝑎 ∅ → ∃𝑦𝑎(𝑎𝑦) = ∅)   )
12:: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ▶   (𝑎 On ∧ 𝑎 ≠ ∅)   )
13:12: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ▶   𝑎    )
14:13,11: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ▶   𝑦 𝑎(𝑎𝑦) = ∅   )
15:14: ((𝑎 ⊆ On ∧ 𝑎 ≠ ∅) → ∃𝑦𝑎 (𝑎𝑦) = ∅)
16:15: 𝑎((𝑎 ⊆ On ∧ 𝑎 ≠ ∅) → ∃𝑦 𝑎(𝑎𝑦) = ∅)
qed:16: E Fr On
(Contributed by Alan Sare, 22-Jul-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
E Fr On
 
Theoremcsbeq2gVD 44303 Virtual deduction proof of csbeq2 3894. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. csbeq2 3894 is csbeq2gVD 44303 without virtual deductions and was automatically derived from csbeq2gVD 44303.
1:: (   𝐴𝑉   ▶   𝐴𝑉   )
2:1: (   𝐴𝑉   ▶   (∀𝑥𝐵 = 𝐶[𝐴 / 𝑥] 𝐵 = 𝐶)   )
3:1: (   𝐴𝑉   ▶   ([𝐴 / 𝑥]𝐵 = 𝐶𝐴 / 𝑥𝐵 = 𝐴 / 𝑥𝐶)   )
4:2,3: (   𝐴𝑉   ▶   (∀𝑥𝐵 = 𝐶𝐴 / 𝑥 𝐵 = 𝐴 / 𝑥𝐶)   )
qed:4: (𝐴𝑉 → (∀𝑥𝐵 = 𝐶𝐴 / 𝑥 𝐵 = 𝐴 / 𝑥𝐶))
(Contributed by Alan Sare, 10-Nov-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝐴𝑉 → (∀𝑥 𝐵 = 𝐶𝐴 / 𝑥𝐵 = 𝐴 / 𝑥𝐶))
 
TheoremcsbsngVD 44304 Virtual deduction proof of csbsng 4708. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. csbsng 4708 is csbsngVD 44304 without virtual deductions and was automatically derived from csbsngVD 44304.
1:: (   𝐴𝑉   ▶   𝐴𝑉   )
2:1: (   𝐴𝑉   ▶   ([𝐴 / 𝑥]𝑦 = 𝐵 𝐴 / 𝑥𝑦 = 𝐴 / 𝑥𝐵)   )
3:1: (   𝐴𝑉   ▶   𝐴 / 𝑥𝑦 = 𝑦   )
4:3: (   𝐴𝑉   ▶   (𝐴 / 𝑥𝑦 = 𝐴 / 𝑥𝐵𝑦 = 𝐴 / 𝑥𝐵)   )
5:2,4: (   𝐴𝑉   ▶   ([𝐴 / 𝑥]𝑦 = 𝐵 𝑦 = 𝐴 / 𝑥𝐵)   )
6:5: (   𝐴𝑉   ▶   𝑦([𝐴 / 𝑥]𝑦 = 𝐵𝑦 = 𝐴 / 𝑥𝐵)   )
7:6: (   𝐴𝑉   ▶   {𝑦[𝐴 / 𝑥]𝑦 = 𝐵} = {𝑦𝑦 = 𝐴 / 𝑥𝐵}   )
8:1: (   𝐴𝑉   ▶   {𝑦[𝐴 / 𝑥]𝑦 = 𝐵} = 𝐴 / 𝑥{𝑦𝑦 = 𝐵}   )
9:7,8: (   𝐴𝑉   ▶   𝐴 / 𝑥{𝑦𝑦 = 𝐵} = {𝑦𝑦 = 𝐴 / 𝑥𝐵}   )
10:: {𝐵} = {𝑦𝑦 = 𝐵}
11:10: 𝑥{𝐵} = {𝑦𝑦 = 𝐵}
12:1,11: (   𝐴𝑉   ▶   𝐴 / 𝑥{𝐵} = 𝐴 / 𝑥{𝑦𝑦 = 𝐵}   )
13:9,12: (   𝐴𝑉   ▶   𝐴 / 𝑥{𝐵} = { 𝑦𝑦 = 𝐴 / 𝑥𝐵}   )
14:: {𝐴 / 𝑥𝐵} = {𝑦𝑦 = 𝐴 / 𝑥𝐵}
15:13,14: (   𝐴𝑉   ▶   𝐴 / 𝑥{𝐵} = { 𝐴 / 𝑥𝐵}   )
qed:15: (𝐴𝑉𝐴 / 𝑥{𝐵} = { 𝐴 / 𝑥𝐵})
(Contributed by Alan Sare, 10-Nov-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝐴𝑉𝐴 / 𝑥{𝐵} = {𝐴 / 𝑥𝐵})
 
TheoremcsbxpgVD 44305 Virtual deduction proof of csbxp 5771. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. csbxp 5771 is csbxpgVD 44305 without virtual deductions and was automatically derived from csbxpgVD 44305.
1:: (   𝐴𝑉   ▶   𝐴𝑉   )
2:1: (   𝐴𝑉   ▶   ([𝐴 / 𝑥]𝑤𝐵 𝐴 / 𝑥𝑤𝐴 / 𝑥𝐵)   )
3:1: (   𝐴𝑉   ▶   𝐴 / 𝑥𝑤 = 𝑤   )
4:3: (   𝐴𝑉   ▶   (𝐴 / 𝑥𝑤𝐴 / 𝑥𝐵𝑤𝐴 / 𝑥𝐵)   )
5:2,4: (   𝐴𝑉   ▶   ([𝐴 / 𝑥]𝑤𝐵𝑤 𝐴 / 𝑥𝐵)   )
6:1: (   𝐴𝑉   ▶   ([𝐴 / 𝑥]𝑦𝐶 𝐴 / 𝑥𝑦𝐴 / 𝑥𝐶)   )
7:1: (   𝐴𝑉   ▶   𝐴 / 𝑥𝑦 = 𝑦   )
8:7: (   𝐴𝑉   ▶   (𝐴 / 𝑥𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐶)   )
9:6,8: (   𝐴𝑉   ▶   ([𝐴 / 𝑥]𝑦𝐶𝑦 𝐴 / 𝑥𝐶)   )
10:5,9: (   𝐴𝑉   ▶   (([𝐴 / 𝑥]𝑤𝐵 [𝐴 / 𝑥]𝑦𝐶) ↔ (𝑤𝐴 / 𝑥𝐵 𝑦𝐴 / 𝑥𝐶))   )
11:1: (   𝐴𝑉   ▶   ([𝐴 / 𝑥](𝑤𝐵 𝑦𝐶) ↔ ([𝐴 / 𝑥]𝑤𝐵[𝐴 / 𝑥]𝑦𝐶))   )
12:10,11: (   𝐴𝑉   ▶   ([𝐴 / 𝑥](𝑤𝐵 𝑦𝐶) ↔ (𝑤𝐴 / 𝑥𝐵𝑦𝐴 / 𝑥𝐶))   )
13:1: (   𝐴𝑉   ▶   ([𝐴 / 𝑥]𝑧 = ⟨𝑤   ,    𝑦⟩ ↔ 𝑧 = ⟨𝑤, 𝑦⟩)   )
14:12,13: (   𝐴𝑉   ▶   (([𝐴 / 𝑥]𝑧 = ⟨𝑤    ,   𝑦⟩ ∧ [𝐴 / 𝑥](𝑤𝐵𝑦𝐶)) ↔ (𝑧 = ⟨𝑤, 𝑦 ∧ (𝑤𝐴 / 𝑥𝐵𝑦𝐴 / 𝑥𝐶)))   )
15:1: (   𝐴𝑉   ▶   ([𝐴 / 𝑥](𝑧 = ⟨𝑤    ,   𝑦⟩ ∧ (𝑤𝐵𝑦𝐶)) ↔ ([𝐴 / 𝑥]𝑧 = ⟨𝑤, 𝑦 [𝐴 / 𝑥](𝑤𝐵𝑦𝐶)))   )
16:14,15: (   𝐴𝑉   ▶   ([𝐴 / 𝑥](𝑧 = ⟨𝑤    ,   𝑦⟩ ∧ (𝑤𝐵𝑦𝐶)) ↔ (𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐴 / 𝑥𝐵𝑦𝐴 / 𝑥𝐶)))   )
17:16: (   𝐴𝑉   ▶   𝑦([𝐴 / 𝑥](𝑧 = 𝑤, 𝑦⟩ ∧ (𝑤𝐵𝑦𝐶)) ↔ (𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐴 / 𝑥𝐵𝑦𝐴 / 𝑥𝐶)))   )
18:17: (   𝐴𝑉   ▶   (∃𝑦[𝐴 / 𝑥](𝑧 = 𝑤, 𝑦⟩ ∧ (𝑤𝐵𝑦𝐶)) ↔ ∃𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐴 / 𝑥𝐵𝑦𝐴 / 𝑥𝐶)))   )
19:1: (   𝐴𝑉   ▶   ([𝐴 / 𝑥]𝑦(𝑧 = 𝑤, 𝑦⟩ ∧ (𝑤𝐵𝑦𝐶)) ↔ ∃𝑦[𝐴 / 𝑥](𝑧 = 𝑤, 𝑦⟩ ∧ (𝑤𝐵𝑦𝐶)))   )
20:18,19: (   𝐴𝑉   ▶   ([𝐴 / 𝑥]𝑦(𝑧 = 𝑤, 𝑦⟩ ∧ (𝑤𝐵𝑦𝐶)) ↔ ∃𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐴 / 𝑥𝐵𝑦𝐴 / 𝑥𝐶)))   )
21:20: (   𝐴𝑉   ▶   𝑤([𝐴 / 𝑥]𝑦( 𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐵𝑦𝐶)) ↔ ∃𝑦(𝑧 = 𝑤, 𝑦⟩ ∧ (𝑤𝐴 / 𝑥𝐵𝑦𝐴 / 𝑥𝐶)))   )
22:21: (   𝐴𝑉   ▶   (∃𝑤[𝐴 / 𝑥]𝑦( 𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐵𝑦𝐶)) ↔ ∃𝑤𝑦(𝑧 = 𝑤, 𝑦⟩ ∧ (𝑤𝐴 / 𝑥𝐵𝑦𝐴 / 𝑥𝐶)))   )
23:1: (   𝐴𝑉   ▶   ([𝐴 / 𝑥]𝑤𝑦( 𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐵𝑦𝐶)) ↔ ∃𝑤[𝐴 / 𝑥]𝑦 (𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐵𝑦𝐶)))   )
24:22,23: (   𝐴𝑉   ▶   ([𝐴 / 𝑥]𝑤𝑦( 𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐵𝑦𝐶)) ↔ ∃𝑤𝑦(𝑧 = 𝑤, 𝑦⟩ ∧ (𝑤𝐴 / 𝑥𝐵𝑦𝐴 / 𝑥𝐶)))   )
25:24: (   𝐴𝑉   ▶   𝑧([𝐴 / 𝑥]𝑤 𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐵𝑦𝐶)) ↔ ∃𝑤𝑦(𝑧 = 𝑤, 𝑦⟩ ∧ (𝑤𝐴 / 𝑥𝐵𝑦𝐴 / 𝑥𝐶)))   )
26:25: (   𝐴𝑉   ▶   {𝑧[𝐴 / 𝑥]𝑤 𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐵𝑦𝐶))} = {𝑧 ∣ ∃𝑤𝑦( 𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐴 / 𝑥𝐵𝑦𝐴 / 𝑥𝐶))}    )
27:1: (   𝐴𝑉   ▶   𝐴 / 𝑥{𝑧 ∣ ∃𝑤 𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐵𝑦𝐶))} = {𝑧[𝐴 / 𝑥] 𝑤𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐵𝑦𝐶))}   )
28:26,27: (   𝐴𝑉   ▶   𝐴 / 𝑥{𝑧 ∣ ∃𝑤 𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐵𝑦𝐶))} = {𝑧 ∣ ∃𝑤𝑦( 𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐴 / 𝑥𝐵𝑦𝐴 / 𝑥𝐶))}    )
29:: {⟨𝑤   ,   𝑦⟩ ∣ (𝑤𝐵𝑦𝐶)} = {𝑧 ∣ ∃𝑤𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐵𝑦𝐶))}
30:: (𝐵 × 𝐶) = {⟨𝑤   ,   𝑦⟩ ∣ (𝑤𝐵 𝑦𝐶)}
31:29,30: (𝐵 × 𝐶) = {𝑧 ∣ ∃𝑤𝑦(𝑧 = ⟨𝑤 , 𝑦⟩ ∧ (𝑤𝐵𝑦𝐶))}
32:31: 𝑥(𝐵 × 𝐶) = {𝑧 ∣ ∃𝑤𝑦(𝑧 = 𝑤, 𝑦⟩ ∧ (𝑤𝐵𝑦𝐶))}
33:1,32: (   𝐴𝑉   ▶   𝐴 / 𝑥(𝐵 × 𝐶) = 𝐴 / 𝑥{𝑧 ∣ ∃𝑤𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐵 𝑦𝐶))}   )
34:28,33: (   𝐴𝑉   ▶   𝐴 / 𝑥(𝐵 × 𝐶) = {𝑧 ∣ ∃𝑤𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐴 / 𝑥𝐵 𝑦𝐴 / 𝑥𝐶))}   )
35:: {⟨𝑤   ,   𝑦⟩ ∣ (𝑤𝐴 / 𝑥𝐵 𝑦𝐴 / 𝑥𝐶)} = {𝑧 ∣ ∃𝑤𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐴 / 𝑥𝐵𝑦𝐴 / 𝑥𝐶))}
36:: (𝐴 / 𝑥𝐵 × 𝐴 / 𝑥𝐶) = { 𝑤, 𝑦⟩ ∣ (𝑤𝐴 / 𝑥𝐵𝑦𝐴 / 𝑥𝐶)}
37:35,36: (𝐴 / 𝑥𝐵 × 𝐴 / 𝑥𝐶) = {𝑧 ∣ ∃𝑤𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐴 / 𝑥𝐵 𝑦𝐴 / 𝑥𝐶))}
38:34,37: (   𝐴𝑉   ▶   𝐴 / 𝑥(𝐵 × 𝐶) = (𝐴 / 𝑥𝐵 × 𝐴 / 𝑥𝐶)   )
qed:38: (𝐴𝑉𝐴 / 𝑥(𝐵 × 𝐶) = ( 𝐴 / 𝑥𝐵 × 𝐴 / 𝑥𝐶))
(Contributed by Alan Sare, 10-Nov-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝐴𝑉𝐴 / 𝑥(𝐵 × 𝐶) = (𝐴 / 𝑥𝐵 × 𝐴 / 𝑥𝐶))
 
TheoremcsbresgVD 44306 Virtual deduction proof of csbres 5982. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. csbres 5982 is csbresgVD 44306 without virtual deductions and was automatically derived from csbresgVD 44306.
1:: (   𝐴𝑉   ▶   𝐴𝑉   )
2:1: (   𝐴𝑉   ▶   𝐴 / 𝑥V = V   )
3:2: (   𝐴𝑉   ▶   (𝐴 / 𝑥𝐶 × 𝐴 / 𝑥V) = (𝐴 / 𝑥𝐶 × V)   )
4:1: (   𝐴𝑉   ▶   𝐴 / 𝑥(𝐶 × V) = (𝐴 / 𝑥𝐶 × 𝐴 / 𝑥V)   )
5:3,4: (   𝐴𝑉   ▶   𝐴 / 𝑥(𝐶 × V) = (𝐴 / 𝑥𝐶 × V)   )
6:5: (   𝐴𝑉   ▶   (𝐴 / 𝑥𝐵𝐴 / 𝑥(𝐶 × V)) = (𝐴 / 𝑥𝐵 ∩ (𝐴 / 𝑥𝐶 × V))   )
7:1: (   𝐴𝑉   ▶   𝐴 / 𝑥(𝐵 ∩ (𝐶 × V)) = (𝐴 / 𝑥𝐵𝐴 / 𝑥(𝐶 × V))   )
8:6,7: (   𝐴𝑉   ▶   𝐴 / 𝑥(𝐵 ∩ (𝐶 × V)) = (𝐴 / 𝑥𝐵 ∩ (𝐴 / 𝑥𝐶 × V))   )
9:: (𝐵𝐶) = (𝐵 ∩ (𝐶 × V))
10:9: 𝑥(𝐵𝐶) = (𝐵 ∩ (𝐶 × V))
11:1,10: (   𝐴𝑉   ▶   𝐴 / 𝑥(𝐵𝐶) = 𝐴 / 𝑥(𝐵 ∩ (𝐶 × V))   )
12:8,11: (   𝐴𝑉   ▶   𝐴 / 𝑥(𝐵𝐶) = ( 𝐴 / 𝑥𝐵 ∩ (𝐴 / 𝑥𝐶 × V))   )
13:: (𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶) = ( 𝐴 / 𝑥𝐵 ∩ (𝐴 / 𝑥𝐶 × V))
14:12,13: (   𝐴𝑉   ▶   𝐴 / 𝑥(𝐵𝐶) = ( 𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶)   )
qed:14: (𝐴𝑉𝐴 / 𝑥(𝐵𝐶) = ( 𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶))
(Contributed by Alan Sare, 10-Nov-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝐴𝑉𝐴 / 𝑥(𝐵𝐶) = (𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶))
 
TheoremcsbrngVD 44307 Virtual deduction proof of csbrn 6201. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. csbrn 6201 is csbrngVD 44307 without virtual deductions and was automatically derived from csbrngVD 44307.
1:: (   𝐴𝑉   ▶   𝐴𝑉   )
2:1: (   𝐴𝑉   ▶   ([𝐴 / 𝑥]𝑤   ,   𝑦 𝐵𝐴 / 𝑥𝑤, 𝑦⟩ ∈ 𝐴 / 𝑥𝐵)   )
3:1: (   𝐴𝑉   ▶   𝐴 / 𝑥𝑤   ,   𝑦⟩ = 𝑤, 𝑦   )
4:3: (   𝐴𝑉   ▶   (𝐴 / 𝑥𝑤   ,   𝑦 𝐴 / 𝑥𝐵 ↔ ⟨𝑤, 𝑦⟩ ∈ 𝐴 / 𝑥𝐵)   )
5:2,4: (   𝐴𝑉   ▶   ([𝐴 / 𝑥]𝑤   ,   𝑦 𝐵 ↔ ⟨𝑤, 𝑦⟩ ∈ 𝐴 / 𝑥𝐵)   )
6:5: (   𝐴𝑉   ▶   𝑤([𝐴 / 𝑥]𝑤   ,    𝑦⟩ ∈ 𝐵 ↔ ⟨𝑤, 𝑦⟩ ∈ 𝐴 / 𝑥𝐵)   )
7:6: (   𝐴𝑉   ▶   (∃𝑤[𝐴 / 𝑥]𝑤   ,    𝑦⟩ ∈ 𝐵 ↔ ∃𝑤𝑤, 𝑦⟩ ∈ 𝐴 / 𝑥𝐵)   )
8:1: (   𝐴𝑉   ▶   (∃𝑤[𝐴 / 𝑥]𝑤   ,    𝑦⟩ ∈ 𝐵[𝐴 / 𝑥]𝑤𝑤, 𝑦⟩ ∈ 𝐵)   )
9:7,8: (   𝐴𝑉   ▶   ([𝐴 / 𝑥]𝑤𝑤    ,   𝑦⟩ ∈ 𝐵 ↔ ∃𝑤𝑤, 𝑦⟩ ∈ 𝐴 / 𝑥𝐵)   )
10:9: (   𝐴𝑉   ▶   𝑦([𝐴 / 𝑥]𝑤 𝑤, 𝑦⟩ ∈ 𝐵 ↔ ∃𝑤𝑤, 𝑦⟩ ∈ 𝐴 / 𝑥𝐵)   )
11:10: (   𝐴𝑉   ▶   {𝑦[𝐴 / 𝑥]𝑤 𝑤, 𝑦⟩ ∈ 𝐵} = {𝑦 ∣ ∃𝑤𝑤, 𝑦⟩ ∈ 𝐴 / 𝑥𝐵}   )
12:1: (   𝐴𝑉   ▶   𝐴 / 𝑥{𝑦 ∣ ∃𝑤 𝑤, 𝑦⟩ ∈ 𝐵} = {𝑦[𝐴 / 𝑥]𝑤𝑤, 𝑦⟩ ∈ 𝐵}   )
13:11,12: (   𝐴𝑉   ▶   𝐴 / 𝑥{𝑦 ∣ ∃𝑤 𝑤, 𝑦⟩ ∈ 𝐵} = {𝑦 ∣ ∃𝑤𝑤, 𝑦⟩ ∈ 𝐴 / 𝑥𝐵}   )
14:: ran 𝐵 = {𝑦 ∣ ∃𝑤𝑤   ,   𝑦⟩ ∈ 𝐵}
15:14: 𝑥ran 𝐵 = {𝑦 ∣ ∃𝑤𝑤   ,   𝑦 𝐵}
16:1,15: (   𝐴𝑉   ▶   𝐴 / 𝑥ran 𝐵 = 𝐴 / 𝑥{𝑦 ∣ ∃𝑤𝑤, 𝑦⟩ ∈ 𝐵}   )
17:13,16: (   𝐴𝑉   ▶   𝐴 / 𝑥ran 𝐵 = {𝑦 𝑤𝑤, 𝑦⟩ ∈ 𝐴 / 𝑥𝐵}   )
18:: ran 𝐴 / 𝑥𝐵 = {𝑦 ∣ ∃𝑤𝑤    ,   𝑦⟩ ∈ 𝐴 / 𝑥𝐵}
19:17,18: (   𝐴𝑉   ▶   𝐴 / 𝑥ran 𝐵 = ran 𝐴 / 𝑥𝐵   )
qed:19: (𝐴𝑉𝐴 / 𝑥ran 𝐵 = ran 𝐴 / 𝑥𝐵)
(Contributed by Alan Sare, 10-Nov-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝐴𝑉𝐴 / 𝑥ran 𝐵 = ran 𝐴 / 𝑥𝐵)
 
Theoremcsbima12gALTVD 44308 Virtual deduction proof of csbima12 6076. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. csbima12 6076 is csbima12gALTVD 44308 without virtual deductions and was automatically derived from csbima12gALTVD 44308.
1:: (   𝐴𝐶   ▶   𝐴𝐶   )
2:1: (   𝐴𝐶   ▶   𝐴 / 𝑥(𝐹𝐵) = ( 𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵)   )
3:2: (   𝐴𝐶   ▶    ran 𝐴 / 𝑥(𝐹𝐵) = ran (𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵)   )
4:1: (   𝐴𝐶   ▶    𝐴 / 𝑥ran (𝐹𝐵) = ran 𝐴 / 𝑥(𝐹𝐵)   )
5:3,4: (   𝐴𝐶   ▶    𝐴 / 𝑥ran (𝐹𝐵) = ran (𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵)   )
6:: (𝐹𝐵) = ran (𝐹𝐵)
7:6: 𝑥(𝐹𝐵) = ran (𝐹𝐵)
8:1,7: (   𝐴𝐶   ▶   𝐴 / 𝑥(𝐹𝐵) = 𝐴 / 𝑥ran (𝐹𝐵)   )
9:5,8: (   𝐴𝐶   ▶   𝐴 / 𝑥(𝐹𝐵) = ran (𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵)   )
10:: (𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵) = ran (𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵)
11:9,10: (   𝐴𝐶   ▶   𝐴 / 𝑥(𝐹𝐵) = ( 𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵)   )
qed:11: (𝐴𝐶𝐴 / 𝑥(𝐹𝐵) = ( 𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵))
(Contributed by Alan Sare, 10-Nov-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝐴𝐶𝐴 / 𝑥(𝐹𝐵) = (𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵))
 
TheoremcsbunigVD 44309 Virtual deduction proof of csbuni 4934. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. csbuni 4934 is csbunigVD 44309 without virtual deductions and was automatically derived from csbunigVD 44309.
1:: (   𝐴𝑉   ▶   𝐴𝑉   )
2:1: (   𝐴𝑉   ▶   ([𝐴 / 𝑥]𝑧𝑦𝑧 𝑦)   )
3:1: (   𝐴𝑉   ▶   ([𝐴 / 𝑥]𝑦𝐵𝑦 𝐴 / 𝑥𝐵)   )
4:2,3: (   𝐴𝑉   ▶   (([𝐴 / 𝑥]𝑧𝑦 [𝐴 / 𝑥]𝑦𝐵) ↔ (𝑧𝑦𝑦𝐴 / 𝑥𝐵))   )
5:1: (   𝐴𝑉   ▶   ([𝐴 / 𝑥](𝑧𝑦 𝑦𝐵) ↔ ([𝐴 / 𝑥]𝑧𝑦[𝐴 / 𝑥]𝑦𝐵))   )
6:4,5: (   𝐴𝑉   ▶   ([𝐴 / 𝑥](𝑧𝑦 𝑦𝐵) ↔ (𝑧𝑦𝑦𝐴 / 𝑥𝐵))   )
7:6: (   𝐴𝑉   ▶   𝑦([𝐴 / 𝑥](𝑧 𝑦𝑦𝐵) ↔ (𝑧𝑦𝑦𝐴 / 𝑥𝐵))   )
8:7: (   𝐴𝑉   ▶   (∃𝑦[𝐴 / 𝑥](𝑧 𝑦𝑦𝐵) ↔ ∃𝑦(𝑧𝑦𝑦𝐴 / 𝑥𝐵))   )
9:1: (   𝐴𝑉   ▶   ([𝐴 / 𝑥]𝑦(𝑧 𝑦𝑦𝐵) ↔ ∃𝑦[𝐴 / 𝑥](𝑧𝑦𝑦𝐵))   )
10:8,9: (   𝐴𝑉   ▶   ([𝐴 / 𝑥]𝑦(𝑧 𝑦𝑦𝐵) ↔ ∃𝑦(𝑧𝑦𝑦𝐴 / 𝑥𝐵))   )
11:10: (   𝐴𝑉   ▶   𝑧([𝐴 / 𝑥]𝑦( 𝑧𝑦𝑦𝐵) ↔ ∃𝑦(𝑧𝑦𝑦𝐴 / 𝑥𝐵))   )
12:11: (   𝐴𝑉   ▶   {𝑧[𝐴 / 𝑥]𝑦( 𝑧𝑦𝑦𝐵)} = {𝑧 ∣ ∃𝑦(𝑧𝑦 𝑦𝐴 / 𝑥𝐵)}   )
13:1: (   𝐴𝑉   ▶   𝐴 / 𝑥{𝑧 ∣ ∃𝑦(𝑧 𝑦𝑦𝐵)} = {𝑧[𝐴 / 𝑥]𝑦(𝑧𝑦𝑦𝐵)}    )
14:12,13: (   𝐴𝑉   ▶   𝐴 / 𝑥{𝑧 ∣ ∃𝑦(𝑧 𝑦𝑦𝐵)} = {𝑧 ∣ ∃𝑦(𝑧𝑦 𝑦𝐴 / 𝑥𝐵)}   )
15:: 𝐵 = {𝑧 ∣ ∃𝑦(𝑧𝑦𝑦𝐵)}
16:15: 𝑥 𝐵 = {𝑧 ∣ ∃𝑦(𝑧𝑦𝑦 𝐵)}
17:1,16: (   𝐴𝑉   ▶   [𝐴 / 𝑥] 𝐵 = {𝑧 𝑦(𝑧𝑦𝑦𝐵)}   )
18:1,17: (   𝐴𝑉   ▶   𝐴 / 𝑥 𝐵 = 𝐴 / 𝑥{𝑧 ∣ ∃𝑦(𝑧𝑦𝑦𝐵)}   )
19:14,18: (   𝐴𝑉   ▶   𝐴 / 𝑥 𝐵 = {𝑧 𝑦(𝑧𝑦𝑦𝐴 / 𝑥𝐵)}   )
20:: 𝐴 / 𝑥𝐵 = {𝑧 ∣ ∃𝑦(𝑧𝑦 𝑦𝐴 / 𝑥𝐵)}
21:19,20: (   𝐴𝑉   ▶   𝐴 / 𝑥 𝐵 = 𝐴 / 𝑥𝐵   )
qed:21: (𝐴𝑉𝐴 / 𝑥 𝐵 = 𝐴 / 𝑥𝐵)
(Contributed by Alan Sare, 10-Nov-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝐴𝑉𝐴 / 𝑥 𝐵 = 𝐴 / 𝑥𝐵)
 
Theoremcsbfv12gALTVD 44310 Virtual deduction proof of csbfv12 6939. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. csbfv12 6939 is csbfv12gALTVD 44310 without virtual deductions and was automatically derived from csbfv12gALTVD 44310.
1:: (   𝐴𝐶   ▶   𝐴𝐶   )
2:1: (   𝐴𝐶   ▶   𝐴 / 𝑥{𝑦} = { 𝑦}   )
3:1: (   𝐴𝐶   ▶   𝐴 / 𝑥(𝐹 “ {𝐵 }) = (𝐴 / 𝑥𝐹𝐴 / 𝑥{𝐵})   )
4:1: (   𝐴𝐶   ▶   𝐴 / 𝑥{𝐵} = { 𝐴 / 𝑥𝐵}   )
5:4: (   𝐴𝐶   ▶   (𝐴 / 𝑥𝐹𝐴 / 𝑥{𝐵}) = (𝐴 / 𝑥𝐹 “ {𝐴 / 𝑥𝐵})   )
6:3,5: (   𝐴𝐶   ▶   𝐴 / 𝑥(𝐹 “ {𝐵 }) = (𝐴 / 𝑥𝐹 “ {𝐴 / 𝑥𝐵})   )
7:1: (   𝐴𝐶   ▶   ([𝐴 / 𝑥](𝐹 “ { 𝐵}) = {𝑦} ↔ 𝐴 / 𝑥(𝐹 “ {𝐵}) = 𝐴 / 𝑥{𝑦})   )
8:6,2: (   𝐴𝐶   ▶   (𝐴 / 𝑥(𝐹 “ { 𝐵}) = 𝐴 / 𝑥{𝑦} ↔ (𝐴 / 𝑥𝐹 “ {𝐴 / 𝑥𝐵}) = {𝑦})   )
9:7,8: (   𝐴𝐶   ▶   ([𝐴 / 𝑥](𝐹 “ { 𝐵}) = {𝑦} ↔ (𝐴 / 𝑥𝐹 “ {𝐴 / 𝑥𝐵}) = {𝑦})    )
10:9: (   𝐴𝐶   ▶   𝑦([𝐴 / 𝑥](𝐹 “ {𝐵}) = {𝑦} ↔ (𝐴 / 𝑥𝐹 “ {𝐴 / 𝑥𝐵}) = {𝑦})   )
11:10: (   𝐴𝐶   ▶   {𝑦[𝐴 / 𝑥](𝐹 “ {𝐵}) = {𝑦}} = {𝑦 ∣ (𝐴 / 𝑥𝐹 “ {𝐴 / 𝑥𝐵}) = {𝑦}}   )
12:1: (   𝐴𝐶   ▶   𝐴 / 𝑥{𝑦 ∣ (𝐹 “ {𝐵}) = {𝑦}} = {𝑦[𝐴 / 𝑥](𝐹 “ {𝐵}) = {𝑦}}   )
13:11,12: (   𝐴𝐶   ▶   𝐴 / 𝑥{𝑦 ∣ (𝐹 “ {𝐵}) = {𝑦}} = {𝑦 ∣ (𝐴 / 𝑥𝐹 “ {𝐴 / 𝑥𝐵}) = {𝑦 }}   )
14:13: (   𝐴𝐶   ▶    𝐴 / 𝑥{𝑦 ∣ ( 𝐹 “ {𝐵}) = {𝑦}} = {𝑦 ∣ (𝐴 / 𝑥𝐹 {𝐴 / 𝑥𝐵}) = {𝑦}}   )
15:1: (   𝐴𝐶   ▶   𝐴 / 𝑥 {𝑦 ∣ ( 𝐹 “ {𝐵}) = {𝑦}} = 𝐴 / 𝑥{𝑦 ∣ (𝐹 “ {𝐵}) = {𝑦}}   )
16:14,15: (   𝐴𝐶   ▶   𝐴 / 𝑥 {𝑦 ∣ ( 𝐹 “ {𝐵}) = {𝑦}} = {𝑦 ∣ (𝐴 / 𝑥𝐹 “ {𝐴 / 𝑥𝐵}) = {𝑦}}   )
17:: (𝐹𝐵) = {𝑦 ∣ (𝐹 “ {𝐵}) = {𝑦}}
18:17: 𝑥(𝐹𝐵) = {𝑦 ∣ (𝐹 “ {𝐵 }) = {𝑦}}
19:1,18: (   𝐴𝐶   ▶   𝐴 / 𝑥(𝐹𝐵) = 𝐴 / 𝑥 {𝑦 ∣ (𝐹 “ {𝐵}) = {𝑦}}   )
20:16,19: (   𝐴𝐶   ▶   𝐴 / 𝑥(𝐹𝐵) = {𝑦 ∣ (𝐴 / 𝑥𝐹 “ {𝐴 / 𝑥𝐵}) = {𝑦}}   )
21:: (𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵) = {𝑦 ∣ (𝐴 / 𝑥𝐹 “ {𝐴 / 𝑥𝐵}) = {𝑦}}
22:20,21: (   𝐴𝐶   ▶   𝐴 / 𝑥(𝐹𝐵) = (𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵)   )
qed:22: (𝐴𝐶𝐴 / 𝑥(𝐹𝐵) = (𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵))
(Contributed by Alan Sare, 10-Nov-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝐴𝐶𝐴 / 𝑥(𝐹𝐵) = (𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵))
 
Theoremcon5VD 44311 Virtual deduction proof of con5 43933. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. con5 43933 is con5VD 44311 without virtual deductions and was automatically derived from con5VD 44311.
1:: (   (𝜑 ↔ ¬ 𝜓)   ▶   (𝜑 ↔ ¬ 𝜓)   )
2:1: (   (𝜑 ↔ ¬ 𝜓)   ▶   𝜓𝜑)   )
3:2: (   (𝜑 ↔ ¬ 𝜓)   ▶   𝜑 → ¬ ¬ 𝜓 )   )
4:: (𝜓 ↔ ¬ ¬ 𝜓)
5:3,4: (   (𝜑 ↔ ¬ 𝜓)   ▶   𝜑𝜓)   )
qed:5: ((𝜑 ↔ ¬ 𝜓) → (¬ 𝜑𝜓))
(Contributed by Alan Sare, 21-Apr-2013.) (Proof modification is discouraged.) (New usage is discouraged.)
((𝜑 ↔ ¬ 𝜓) → (¬ 𝜑𝜓))
 
TheoremrelopabVD 44312 Virtual deduction proof of relopab 5820. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. relopab 5820 is relopabVD 44312 without virtual deductions and was automatically derived from relopabVD 44312.
1:: (   𝑦 = 𝑣   ▶   𝑦 = 𝑣   )
2:1: (   𝑦 = 𝑣   ▶   𝑥   ,   𝑦⟩ = ⟨𝑥   ,   𝑣    )
3:: (   𝑦 = 𝑣   ,   𝑥 = 𝑢   ▶   𝑥 = 𝑢   )
4:3: (   𝑦 = 𝑣   ,   𝑥 = 𝑢   ▶   𝑥   ,   𝑣⟩ = ⟨ 𝑢, 𝑣   )
5:2,4: (   𝑦 = 𝑣   ,   𝑥 = 𝑢   ▶   𝑥   ,   𝑦⟩ = ⟨ 𝑢, 𝑣   )
6:5: (   𝑦 = 𝑣   ,   𝑥 = 𝑢   ▶   (𝑧 = ⟨𝑥   ,   𝑦 ⟩ → 𝑧 = ⟨𝑢, 𝑣⟩)   )
7:6: (   𝑦 = 𝑣   ▶   (𝑥 = 𝑢 → (𝑧 = ⟨𝑥   ,    𝑦⟩ → 𝑧 = ⟨𝑢, 𝑣⟩))   )
8:7: (𝑦 = 𝑣 → (𝑥 = 𝑢 → (𝑧 = ⟨𝑥   ,   𝑦 ⟩ → 𝑧 = ⟨𝑢, 𝑣⟩)))
9:8: (∃𝑣𝑦 = 𝑣 → ∃𝑣(𝑥 = 𝑢 → (𝑧 = ⟨𝑥, 𝑦⟩ → 𝑧 = ⟨𝑢, 𝑣⟩)))
90:: (𝑣 = 𝑦𝑦 = 𝑣)
91:90: (∃𝑣𝑣 = 𝑦 ↔ ∃𝑣𝑦 = 𝑣)
92:: 𝑣𝑣 = 𝑦
10:91,92: 𝑣𝑦 = 𝑣
11:9,10: 𝑣(𝑥 = 𝑢 → (𝑧 = ⟨𝑥   ,   𝑦⟩ → 𝑧 = ⟨𝑢, 𝑣⟩))
12:11: (𝑥 = 𝑢 → ∃𝑣(𝑧 = ⟨𝑥   ,   𝑦⟩ → 𝑧 = ⟨𝑢, 𝑣⟩))
13:: (∃𝑣(𝑧 = ⟨𝑥   ,   𝑦⟩ → 𝑧 = ⟨𝑢 , 𝑣⟩) → (𝑧 = ⟨𝑥, 𝑦⟩ → ∃𝑣𝑧 = ⟨𝑢, 𝑣⟩))
14:12,13: (𝑥 = 𝑢 → (𝑧 = ⟨𝑥   ,   𝑦⟩ → ∃𝑣 𝑧 = ⟨𝑢, 𝑣⟩))
15:14: (∃𝑢𝑥 = 𝑢 → ∃𝑢(𝑧 = ⟨𝑥   ,   𝑦 ⟩ → ∃𝑣𝑧 = ⟨𝑢, 𝑣⟩))
150:: (𝑢 = 𝑥𝑥 = 𝑢)
151:150: (∃𝑢𝑢 = 𝑥 ↔ ∃𝑢𝑥 = 𝑢)
152:: 𝑢𝑢 = 𝑥
16:151,152: 𝑢𝑥 = 𝑢
17:15,16: 𝑢(𝑧 = ⟨𝑥   ,   𝑦⟩ → ∃𝑣𝑧 = ⟨ 𝑢, 𝑣⟩)
18:17: (𝑧 = ⟨𝑥   ,   𝑦⟩ → ∃𝑢𝑣𝑧 = ⟨ 𝑢, 𝑣⟩)
19:18: (∃𝑦𝑧 = ⟨𝑥   ,   𝑦⟩ → ∃𝑦𝑢 𝑣𝑧 = ⟨𝑢, 𝑣⟩)
20:: (∃𝑦𝑢𝑣𝑧 = ⟨𝑢   ,   𝑣⟩ → 𝑢𝑣𝑧 = ⟨𝑢, 𝑣⟩)
21:19,20: (∃𝑦𝑧 = ⟨𝑥   ,   𝑦⟩ → ∃𝑢𝑣𝑧 = ⟨𝑢, 𝑣⟩)
22:21: (∃𝑥𝑦𝑧 = ⟨𝑥   ,   𝑦⟩ → ∃𝑥 𝑢𝑣𝑧 = ⟨𝑢, 𝑣⟩)
23:: (∃𝑥𝑢𝑣𝑧 = ⟨𝑢   ,   𝑣⟩ → 𝑢𝑣𝑧 = ⟨𝑢, 𝑣⟩)
24:22,23: (∃𝑥𝑦𝑧 = ⟨𝑥   ,   𝑦⟩ → ∃𝑢 𝑣𝑧 = ⟨𝑢, 𝑣⟩)
25:24: {𝑧 ∣ ∃𝑥𝑦𝑧 = ⟨𝑥   ,   𝑦⟩} ⊆ {𝑧 ∣ ∃𝑢𝑣𝑧 = ⟨𝑢, 𝑣⟩}
26:: 𝑥 ∈ V
27:: 𝑦 ∈ V
28:26,27: (𝑥 ∈ V ∧ 𝑦 ∈ V)
29:28: (𝑧 = ⟨𝑥   ,   𝑦⟩ ↔ (𝑧 = ⟨𝑥   ,   𝑦 ⟩ ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)))
30:29: (∃𝑦𝑧 = ⟨𝑥   ,   𝑦⟩ ↔ ∃𝑦(𝑧 = 𝑥, 𝑦⟩ ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)))
31:30: (∃𝑥𝑦𝑧 = ⟨𝑥   ,   𝑦⟩ ↔ ∃𝑥 𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)))
32:31: {𝑧 ∣ ∃𝑥𝑦𝑧 = ⟨𝑥   ,   𝑦⟩} = { 𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V))}
320:25,32: {𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥   ,   𝑦⟩ ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V))} ⊆ {𝑧 ∣ ∃𝑢𝑣𝑧 = ⟨𝑢, 𝑣⟩}
33:: 𝑢 ∈ V
34:: 𝑣 ∈ V
35:33,34: (𝑢 ∈ V ∧ 𝑣 ∈ V)
36:35: (𝑧 = ⟨𝑢   ,   𝑣⟩ ↔ (𝑧 = ⟨𝑢   ,   𝑣 ⟩ ∧ (𝑢 ∈ V ∧ 𝑣 ∈ V)))
37:36: (∃𝑣𝑧 = ⟨𝑢   ,   𝑣⟩ ↔ ∃𝑣(𝑧 = 𝑢, 𝑣⟩ ∧ (𝑢 ∈ V ∧ 𝑣 ∈ V)))
38:37: (∃𝑢𝑣𝑧 = ⟨𝑢   ,   𝑣⟩ ↔ ∃𝑢 𝑣(𝑧 = ⟨𝑢, 𝑣⟩ ∧ (𝑢 ∈ V ∧ 𝑣 ∈ V)))
39:38: {𝑧 ∣ ∃𝑢𝑣𝑧 = ⟨𝑢   ,   𝑣⟩} = { 𝑧 ∣ ∃𝑢𝑣(𝑧 = ⟨𝑢, 𝑣⟩ ∧ (𝑢 ∈ V ∧ 𝑣 ∈ V))}
40:320,39: {𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥   ,   𝑦⟩ ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V))} ⊆ {𝑧 ∣ ∃𝑢𝑣(𝑧 = ⟨𝑢, 𝑣⟩ ∧ (𝑢 ∈ V ∧ 𝑣 ∈ V))}
41:: {⟨𝑥   ,   𝑦⟩ ∣ (𝑥 ∈ V ∧ 𝑦 ∈ V )} = {𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)) }
42:: {⟨𝑢   ,   𝑣⟩ ∣ (𝑢 ∈ V ∧ 𝑣 ∈ V )} = {𝑧 ∣ ∃𝑢𝑣(𝑧 = ⟨𝑢, 𝑣⟩ ∧ (𝑢 ∈ V ∧ 𝑣 ∈ V)) }
43:40,41,42: {⟨𝑥   ,   𝑦⟩ ∣ (𝑥 ∈ V ∧ 𝑦 ∈ V )} ⊆ {⟨𝑢, 𝑣⟩ ∣ (𝑢 ∈ V ∧ 𝑣 ∈ V)}
44:: {⟨𝑢   ,   𝑣⟩ ∣ (𝑢 ∈ V ∧ 𝑣 ∈ V )} = (V × V)
45:43,44: {⟨𝑥   ,   𝑦⟩ ∣ (𝑥 ∈ V ∧ 𝑦 ∈ V )} ⊆ (V × V)
46:28: (𝜑 → (𝑥 ∈ V ∧ 𝑦 ∈ V))
47:46: {⟨𝑥   ,   𝑦⟩ ∣ 𝜑} ⊆ {⟨𝑥   ,   𝑦 ∣ (𝑥 ∈ V ∧ 𝑦 ∈ V)}
48:45,47: {⟨𝑥   ,   𝑦⟩ ∣ 𝜑} ⊆ (V × V)
qed:48: Rel {⟨𝑥   ,   𝑦⟩ ∣ 𝜑}
(Contributed by Alan Sare, 9-Jul-2013.) (Proof modification is discouraged.) (New usage is discouraged.)
Rel {⟨𝑥, 𝑦⟩ ∣ 𝜑}
 
Theorem19.41rgVD 44313 Virtual deduction proof of 19.41rg 43961. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. 19.41rg 43961 is 19.41rgVD 44313 without virtual deductions and was automatically derived from 19.41rgVD 44313. (Contributed by Alan Sare, 8-Feb-2014.) (Proof modification is discouraged.) (New usage is discouraged.)
1:: (𝜓 → (𝜑 → (𝜑𝜓)))
2:1: ((𝜓 → ∀𝑥𝜓) → (𝜓 → (𝜑 → ( 𝜑𝜓))))
3:2: 𝑥((𝜓 → ∀𝑥𝜓) → (𝜓 → (𝜑 → (𝜑𝜓))))
4:3: (∀𝑥(𝜓 → ∀𝑥𝜓) → (∀𝑥𝜓 𝑥(𝜑 → (𝜑𝜓))))
5:: (   𝑥(𝜓 → ∀𝑥𝜓)   ▶   𝑥(𝜓 → ∀𝑥𝜓)   )
6:4,5: (   𝑥(𝜓 → ∀𝑥𝜓)   ▶   (∀𝑥𝜓 → ∀𝑥(𝜑 → (𝜑𝜓)))   )
7:: (   𝑥(𝜓 → ∀𝑥𝜓)   ,   𝑥𝜓   ▶    𝑥𝜓   )
8:6,7: (   𝑥(𝜓 → ∀𝑥𝜓)   ,   𝑥𝜓   ▶    𝑥(𝜑 → (𝜑𝜓))   )
9:8: (   𝑥(𝜓 → ∀𝑥𝜓)   ,   𝑥𝜓   ▶    (∃𝑥𝜑 → ∃𝑥(𝜑𝜓))   )
10:9: (   𝑥(𝜓 → ∀𝑥𝜓)   ▶   (∀𝑥𝜓 → (∃𝑥𝜑 → ∃𝑥(𝜑𝜓)))   )
11:5: (   𝑥(𝜓 → ∀𝑥𝜓)   ▶   (𝜓 → ∀ 𝑥𝜓)   )
12:10,11: (   𝑥(𝜓 → ∀𝑥𝜓)   ▶   (𝜓 → ( 𝑥𝜑 → ∃𝑥(𝜑𝜓)))   )
13:12: (   𝑥(𝜓 → ∀𝑥𝜓)   ▶   (∃𝑥𝜑 → (𝜓 → ∃𝑥(𝜑𝜓)))   )
14:13: (   𝑥(𝜓 → ∀𝑥𝜓)   ▶   ((∃𝑥 𝜑𝜓) → ∃𝑥(𝜑𝜓))   )
qed:14: (∀𝑥(𝜓 → ∀𝑥𝜓) → ((∃𝑥𝜑 𝜓) → ∃𝑥(𝜑𝜓)))
(∀𝑥(𝜓 → ∀𝑥𝜓) → ((∃𝑥𝜑𝜓) → ∃𝑥(𝜑𝜓)))
 
Theorem2pm13.193VD 44314 Virtual deduction proof of 2pm13.193 43963. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. 2pm13.193 43963 is 2pm13.193VD 44314 without virtual deductions and was automatically derived from 2pm13.193VD 44314. (Contributed by Alan Sare, 8-Feb-2014.) (Proof modification is discouraged.) (New usage is discouraged.)
1:: (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][ 𝑣 / 𝑦]𝜑)   ▶   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑)   )
2:1: (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][ 𝑣 / 𝑦]𝜑)   ▶   (𝑥 = 𝑢𝑦 = 𝑣)   )
3:2: (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][ 𝑣 / 𝑦]𝜑)   ▶   𝑥 = 𝑢   )
4:1: (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][ 𝑣 / 𝑦]𝜑)   ▶   [𝑢 / 𝑥][𝑣 / 𝑦]𝜑   )
5:3,4: (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][ 𝑣 / 𝑦]𝜑)   ▶   ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑𝑥 = 𝑢)   )
6:5: (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][ 𝑣 / 𝑦]𝜑)   ▶   ([𝑣 / 𝑦]𝜑𝑥 = 𝑢)   )
7:6: (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][ 𝑣 / 𝑦]𝜑)   ▶   [𝑣 / 𝑦]𝜑   )
8:2: (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][ 𝑣 / 𝑦]𝜑)   ▶   𝑦 = 𝑣   )
9:7,8: (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][ 𝑣 / 𝑦]𝜑)   ▶   ([𝑣 / 𝑦]𝜑𝑦 = 𝑣)   )
10:9: (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][ 𝑣 / 𝑦]𝜑)   ▶   (𝜑𝑦 = 𝑣)   )
11:10: (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][ 𝑣 / 𝑦]𝜑)   ▶   𝜑   )
12:2,11: (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][ 𝑣 / 𝑦]𝜑)   ▶   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑)   )
13:12: (((𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑) → ((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑))
14:: (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑)   ▶   (( 𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑)   )
15:14: (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑)   ▶   (𝑥 = 𝑢𝑦 = 𝑣)   )
16:15: (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑)   ▶   𝑦 = 𝑣   )
17:14: (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑)   ▶   𝜑    )
18:16,17: (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑)   ▶   ( 𝜑𝑦 = 𝑣)   )
19:18: (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑)   ▶   ([ 𝑣 / 𝑦]𝜑𝑦 = 𝑣)   )
20:15: (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑)   ▶   𝑥 = 𝑢   )
21:19: (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑)   ▶   [𝑣 / 𝑦]𝜑   )
22:20,21: (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑)   ▶   ([ 𝑣 / 𝑦]𝜑𝑥 = 𝑢)   )
23:22: (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑)   ▶   ([ 𝑢 / 𝑥][𝑣 / 𝑦]𝜑𝑥 = 𝑢)   )
24:23: (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑)   ▶   [𝑢 / 𝑥][𝑣 / 𝑦]𝜑   )
25:15,24: (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑)   ▶   (( 𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑)   )
26:25: (((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑) → ((𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑))
qed:13,26: (((𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑) ↔ ((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑))
(((𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑) ↔ ((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑))
 
TheoremhbimpgVD 44315 Virtual deduction proof of hbimpg 43965. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. hbimpg 43965 is hbimpgVD 44315 without virtual deductions and was automatically derived from hbimpgVD 44315. (Contributed by Alan Sare, 8-Feb-2014.) (Proof modification is discouraged.) (New usage is discouraged.)
1:: (   (∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓 → ∀𝑥𝜓))   ▶   (∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓 𝑥𝜓))   )
2:1: (   (∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓 → ∀𝑥𝜓))   ▶   𝑥(𝜑 → ∀𝑥𝜑)   )
3:: (   (∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓 → ∀𝑥𝜓)), ¬ 𝜑   ▶   ¬ 𝜑   )
4:2: (   (∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓 → ∀𝑥𝜓))   ▶   𝑥𝜑 → ∀𝑥¬ 𝜑)   )
5:4: (   (∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓 → ∀𝑥𝜓))   ▶   𝜑 → ∀𝑥¬ 𝜑)   )
6:3,5: (   (∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓 → ∀𝑥𝜓)), ¬ 𝜑   ▶   𝑥¬ 𝜑   )
7:: 𝜑 → (𝜑𝜓))
8:7: (∀𝑥¬ 𝜑 → ∀𝑥(𝜑𝜓))
9:6,8: (   (∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓 → ∀𝑥𝜓)), ¬ 𝜑   ▶   𝑥(𝜑𝜓)   )
10:9: (   (∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓 → ∀𝑥𝜓))   ▶   𝜑 → ∀𝑥(𝜑𝜓))   )
11:: (𝜓 → (𝜑𝜓))
12:11: (∀𝑥𝜓 → ∀𝑥(𝜑𝜓))
13:1: (   (∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓 → ∀𝑥𝜓))   ▶   𝑥(𝜓 → ∀𝑥𝜓)   )
14:13: (   (∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓 → ∀𝑥𝜓))   ▶   (𝜓 → ∀𝑥𝜓)   )
15:14,12: (   (∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓 → ∀𝑥𝜓))   ▶   (𝜓 → ∀𝑥(𝜑𝜓))   )
16:10,15: (   (∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓 → ∀𝑥𝜓))   ▶   ((¬ 𝜑𝜓) → ∀𝑥(𝜑𝜓))   )
17:: ((𝜑𝜓) ↔ (¬ 𝜑𝜓))
18:16,17: (   (∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓 → ∀𝑥𝜓))   ▶   ((𝜑𝜓) → ∀𝑥(𝜑𝜓))   )
19:: (∀𝑥(𝜑 → ∀𝑥𝜑) → ∀𝑥𝑥( 𝜑 → ∀𝑥𝜑))
20:: (∀𝑥(𝜓 → ∀𝑥𝜓) → ∀𝑥𝑥( 𝜓 → ∀𝑥𝜓))
21:19,20: ((∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓 → ∀𝑥𝜓)) → ∀𝑥(∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓 𝑥𝜓)))
22:21,18: (   (∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓 → ∀𝑥𝜓))   ▶   𝑥((𝜑𝜓) → ∀𝑥(𝜑𝜓))   )
qed:22: ((∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓 → ∀𝑥𝜓)) → ∀𝑥((𝜑𝜓) → ∀𝑥(𝜑𝜓)))
((∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓 → ∀𝑥𝜓)) → ∀𝑥((𝜑𝜓) → ∀𝑥(𝜑𝜓)))
 
TheoremhbalgVD 44316 Virtual deduction proof of hbalg 43966. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. hbalg 43966 is hbalgVD 44316 without virtual deductions and was automatically derived from hbalgVD 44316. (Contributed by Alan Sare, 8-Feb-2014.) (Proof modification is discouraged.) (New usage is discouraged.)
1:: (   𝑦(𝜑 → ∀𝑥𝜑)   ▶   𝑦(𝜑 → ∀𝑥𝜑)   )
2:1: (   𝑦(𝜑 → ∀𝑥𝜑)   ▶   (∀𝑦𝜑 → ∀𝑦𝑥𝜑)   )
3:: (∀𝑦𝑥𝜑 → ∀𝑥𝑦𝜑)
4:2,3: (   𝑦(𝜑 → ∀𝑥𝜑)   ▶   (∀𝑦𝜑 → ∀𝑥𝑦𝜑)   )
5:: (∀𝑦(𝜑 → ∀𝑥𝜑) → ∀𝑦𝑦( 𝜑 → ∀𝑥𝜑))
6:5,4: (   𝑦(𝜑 → ∀𝑥𝜑)   ▶   𝑦(∀ 𝑦𝜑 → ∀𝑥𝑦𝜑)   )
qed:6: (∀𝑦(𝜑 → ∀𝑥𝜑) → ∀𝑦(∀𝑦 𝜑 → ∀𝑥𝑦𝜑))
(∀𝑦(𝜑 → ∀𝑥𝜑) → ∀𝑦(∀𝑦𝜑 → ∀𝑥𝑦𝜑))
 
TheoremhbexgVD 44317 Virtual deduction proof of hbexg 43967. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. hbexg 43967 is hbexgVD 44317 without virtual deductions and was automatically derived from hbexgVD 44317. (Contributed by Alan Sare, 8-Feb-2014.) (Proof modification is discouraged.) (New usage is discouraged.)
1:: (   𝑥𝑦(𝜑 → ∀𝑥𝜑)   ▶   𝑥 𝑦(𝜑 → ∀𝑥𝜑)   )
2:1: (   𝑥𝑦(𝜑 → ∀𝑥𝜑)   ▶   𝑦 𝑥(𝜑 → ∀𝑥𝜑)   )
3:2: (   𝑥𝑦(𝜑 → ∀𝑥𝜑)   ▶   𝑥 (𝜑 → ∀𝑥𝜑)   )
4:3: (   𝑥𝑦(𝜑 → ∀𝑥𝜑)   ▶   𝑥 𝜑 → ∀𝑥¬ 𝜑)   )
5:: (∀𝑥𝑦(𝜑 → ∀𝑥𝜑) ↔ ∀𝑦 𝑥(𝜑 → ∀𝑥𝜑))
6:: (∀𝑦𝑥(𝜑 → ∀𝑥𝜑) → ∀𝑦 𝑦𝑥(𝜑 → ∀𝑥𝜑))
7:5: (∀𝑦𝑥𝑦(𝜑 → ∀𝑥𝜑) ↔ 𝑦𝑦𝑥(𝜑 → ∀𝑥𝜑))
8:5,6,7: (∀𝑥𝑦(𝜑 → ∀𝑥𝜑) → ∀𝑦 𝑥𝑦(𝜑 → ∀𝑥𝜑))
9:8,4: (   𝑥𝑦(𝜑 → ∀𝑥𝜑)   ▶   𝑦 𝑥𝜑 → ∀𝑥¬ 𝜑)   )
10:9: (   𝑥𝑦(𝜑 → ∀𝑥𝜑)   ▶   𝑥 𝑦𝜑 → ∀𝑥¬ 𝜑)   )
11:10: (   𝑥𝑦(𝜑 → ∀𝑥𝜑)   ▶   𝑦 𝜑 → ∀𝑥¬ 𝜑)   )
12:11: (   𝑥𝑦(𝜑 → ∀𝑥𝜑)   ▶   𝑦 (∀𝑦¬ 𝜑 → ∀𝑥𝑦¬ 𝜑)   )
13:12: (   𝑥𝑦(𝜑 → ∀𝑥𝜑)   ▶   (∀ 𝑦¬ 𝜑 → ∀𝑥𝑦¬ 𝜑)   )
14:: (∀𝑥𝑦(𝜑 → ∀𝑥𝜑) → ∀𝑥 𝑥𝑦(𝜑 → ∀𝑥𝜑))
15:13,14: (   𝑥𝑦(𝜑 → ∀𝑥𝜑)   ▶   𝑥 (∀𝑦¬ 𝜑 → ∀𝑥𝑦¬ 𝜑)   )
16:15: (   𝑥𝑦(𝜑 → ∀𝑥𝜑)   ▶   𝑥 (¬ ∀𝑦¬ 𝜑 → ∀𝑥¬ ∀𝑦¬ 𝜑)   )
17:16: (   𝑥𝑦(𝜑 → ∀𝑥𝜑)   ▶    𝑦¬ 𝜑 → ∀𝑥¬ ∀𝑦¬ 𝜑)   )
18:: (∃𝑦𝜑 ↔ ¬ ∀𝑦¬ 𝜑)
19:17,18: (   𝑥𝑦(𝜑 → ∀𝑥𝜑)   ▶   (∃ 𝑦𝜑 → ∀𝑥¬ ∀𝑦¬ 𝜑)   )
20:18: (∀𝑥𝑦𝜑 ↔ ∀𝑥¬ ∀𝑦¬ 𝜑)
21:19,20: (   𝑥𝑦(𝜑 → ∀𝑥𝜑)   ▶   (∃ 𝑦𝜑 → ∀𝑥𝑦𝜑)   )
22:8,21: (   𝑥𝑦(𝜑 → ∀𝑥𝜑)   ▶   𝑦 (∃𝑦𝜑 → ∀𝑥𝑦𝜑)   )
23:14,22: (   𝑥𝑦(𝜑 → ∀𝑥𝜑)   ▶   𝑥 𝑦(∃𝑦𝜑 → ∀𝑥𝑦𝜑)   )
qed:23: (   𝑥𝑦(𝜑 → ∀𝑥𝜑)   ▶   𝑥 𝑦(∃𝑦𝜑 → ∀𝑥𝑦𝜑)   )
(∀𝑥𝑦(𝜑 → ∀𝑥𝜑) → ∀𝑥𝑦(∃𝑦𝜑 → ∀𝑥𝑦𝜑))
 
Theoremax6e2eqVD 44318* The following User's Proof is a Virtual Deduction proof (see wvd1 43980) completed automatically by a Metamath tools program invoking mmj2 and the Metamath Proof Assistant. ax6e2eq 43968 is ax6e2eqVD 44318 without virtual deductions and was automatically derived from ax6e2eqVD 44318. (Contributed by Alan Sare, 25-Mar-2014.) (Proof modification is discouraged.) (New usage is discouraged.)
1:: (   𝑥𝑥 = 𝑦   ▶   𝑥𝑥 = 𝑦   )
2:: (   𝑥𝑥 = 𝑦   ,   𝑥 = 𝑢   ▶   𝑥 = 𝑢   )
3:1: (   𝑥𝑥 = 𝑦   ▶   𝑥 = 𝑦   )
4:2,3: (   𝑥𝑥 = 𝑦   ,   𝑥 = 𝑢   ▶   𝑦 = 𝑢   )
5:2,4: (   𝑥𝑥 = 𝑦   ,   𝑥 = 𝑢   ▶   (𝑥 = 𝑢𝑦 = 𝑢)   )
6:5: (   𝑥𝑥 = 𝑦   ▶   (𝑥 = 𝑢 → (𝑥 = 𝑢 𝑦 = 𝑢))   )
7:6: (∀𝑥𝑥 = 𝑦 → (𝑥 = 𝑢 → (𝑥 = 𝑢𝑦 = 𝑢)))
8:7: (∀𝑥𝑥𝑥 = 𝑦 → ∀𝑥(𝑥 = 𝑢 → ( 𝑥 = 𝑢𝑦 = 𝑢)))
9:: (∀𝑥𝑥 = 𝑦 ↔ ∀𝑥𝑥𝑥 = 𝑦)
10:8,9: (∀𝑥𝑥 = 𝑦 → ∀𝑥(𝑥 = 𝑢 → (𝑥 = 𝑢 𝑦 = 𝑢)))
11:1,10: (   𝑥𝑥 = 𝑦   ▶   𝑥(𝑥 = 𝑢 → (𝑥 = 𝑢𝑦 = 𝑢))   )
12:11: (   𝑥𝑥 = 𝑦   ▶   (∃𝑥𝑥 = 𝑢 → ∃𝑥 (𝑥 = 𝑢𝑦 = 𝑢))   )
13:: 𝑥𝑥 = 𝑢
14:13,12: (   𝑥𝑥 = 𝑦   ▶   𝑥(𝑥 = 𝑢𝑦 = 𝑢 )   )
140:14: (∀𝑥𝑥 = 𝑦 → ∃𝑥(𝑥 = 𝑢𝑦 = 𝑢) )
141:140: (∀𝑥𝑥 = 𝑦 → ∀𝑥𝑥(𝑥 = 𝑢𝑦 = 𝑢))
15:1,141: (   𝑥𝑥 = 𝑦   ▶   𝑥𝑥(𝑥 = 𝑢 𝑦 = 𝑢)   )
16:1,15: (   𝑥𝑥 = 𝑦   ▶   𝑦𝑥(𝑥 = 𝑢 𝑦 = 𝑢)   )
17:16: (   𝑥𝑥 = 𝑦   ▶   𝑦𝑥(𝑥 = 𝑢 𝑦 = 𝑢)   )
18:17: (   𝑥𝑥 = 𝑦   ▶   𝑥𝑦(𝑥 = 𝑢 𝑦 = 𝑢)   )
19:: (   𝑢 = 𝑣   ▶   𝑢 = 𝑣   )
20:: (   𝑢 = 𝑣   ,   (𝑥 = 𝑢𝑦 = 𝑢)   ▶   (𝑥 = 𝑢𝑦 = 𝑢)   )
21:20: (   𝑢 = 𝑣   ,   (𝑥 = 𝑢𝑦 = 𝑢)   ▶   𝑦 = 𝑢    )
22:19,21: (   𝑢 = 𝑣   ,   (𝑥 = 𝑢𝑦 = 𝑢)   ▶   𝑦 = 𝑣    )
23:20: (   𝑢 = 𝑣   ,   (𝑥 = 𝑢𝑦 = 𝑢)   ▶   𝑥 = 𝑢    )
24:22,23: (   𝑢 = 𝑣   ,   (𝑥 = 𝑢𝑦 = 𝑢)   ▶   (𝑥 = 𝑢𝑦 = 𝑣)   )
25:24: (   𝑢 = 𝑣   ▶   ((𝑥 = 𝑢𝑦 = 𝑢) → ( 𝑥 = 𝑢𝑦 = 𝑣))   )
26:25: (   𝑢 = 𝑣   ▶   𝑦((𝑥 = 𝑢𝑦 = 𝑢) → (𝑥 = 𝑢𝑦 = 𝑣))   )
27:26: (   𝑢 = 𝑣   ▶   (∃𝑦(𝑥 = 𝑢𝑦 = 𝑢) → ∃𝑦(𝑥 = 𝑢𝑦 = 𝑣))   )
28:27: (   𝑢 = 𝑣   ▶   𝑥(∃𝑦(𝑥 = 𝑢𝑦 = 𝑢) → ∃𝑦(𝑥 = 𝑢𝑦 = 𝑣))   )
29:28: (   𝑢 = 𝑣   ▶   (∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑢) → ∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣))   )
30:29: (𝑢 = 𝑣 → (∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑢 ) → ∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣)))
31:18,30: (   𝑥𝑥 = 𝑦   ▶   (𝑢 = 𝑣 → ∃𝑥𝑦 (𝑥 = 𝑢𝑦 = 𝑣))   )
qed:31: (∀𝑥𝑥 = 𝑦 → (𝑢 = 𝑣 → ∃𝑥𝑦( 𝑥 = 𝑢𝑦 = 𝑣)))
(∀𝑥 𝑥 = 𝑦 → (𝑢 = 𝑣 → ∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣)))
 
Theoremax6e2ndVD 44319* The following User's Proof is a Virtual Deduction proof (see wvd1 43980) completed automatically by a Metamath tools program invoking mmj2 and the Metamath Proof Assistant. ax6e2nd 43969 is ax6e2ndVD 44319 without virtual deductions and was automatically derived from ax6e2ndVD 44319. (Contributed by Alan Sare, 25-Mar-2014.) (Proof modification is discouraged.) (New usage is discouraged.)
1:: 𝑦𝑦 = 𝑣
2:: 𝑢 ∈ V
3:1,2: (𝑢 ∈ V ∧ ∃𝑦𝑦 = 𝑣)
4:3: 𝑦(𝑢 ∈ V ∧ 𝑦 = 𝑣)
5:: (𝑢 ∈ V ↔ ∃𝑥𝑥 = 𝑢)
6:5: ((𝑢 ∈ V ∧ 𝑦 = 𝑣) ↔ (∃𝑥𝑥 = 𝑢𝑦 = 𝑣))
7:6: (∃𝑦(𝑢 ∈ V ∧ 𝑦 = 𝑣) ↔ ∃𝑦 (∃𝑥𝑥 = 𝑢𝑦 = 𝑣))
8:4,7: 𝑦(∃𝑥𝑥 = 𝑢𝑦 = 𝑣)
9:: (𝑧 = 𝑣 → ∀𝑥𝑧 = 𝑣)
10:: (𝑦 = 𝑣 → ∀𝑧𝑦 = 𝑣)
11:: (   𝑧 = 𝑦   ▶   𝑧 = 𝑦   )
12:11: (   𝑧 = 𝑦   ▶   (𝑧 = 𝑣𝑦 = 𝑣)   )
120:11: (𝑧 = 𝑦 → (𝑧 = 𝑣𝑦 = 𝑣))
13:9,10,120: (¬ ∀𝑥𝑥 = 𝑦 → (𝑦 = 𝑣 → ∀𝑥𝑦 = 𝑣))
14:: (   ¬ ∀𝑥𝑥 = 𝑦   ▶   ¬ ∀𝑥𝑥 = 𝑦   )
15:14,13: (   ¬ ∀𝑥𝑥 = 𝑦   ▶   (𝑦 = 𝑣 → ∀𝑥 𝑦 = 𝑣)   )
16:15: (¬ ∀𝑥𝑥 = 𝑦 → (𝑦 = 𝑣 → ∀𝑥𝑦 = 𝑣))
17:16: (∀𝑥¬ ∀𝑥𝑥 = 𝑦 → ∀𝑥(𝑦 = 𝑣 → ∀𝑥𝑦 = 𝑣))
18:: (¬ ∀𝑥𝑥 = 𝑦 → ∀𝑥¬ ∀𝑥𝑥 = 𝑦 )
19:17,18: (¬ ∀𝑥𝑥 = 𝑦 → ∀𝑥(𝑦 = 𝑣 → ∀ 𝑥𝑦 = 𝑣))
20:14,19: (   ¬ ∀𝑥𝑥 = 𝑦   ▶   𝑥(𝑦 = 𝑣 𝑥𝑦 = 𝑣)   )
21:20: (   ¬ ∀𝑥𝑥 = 𝑦   ▶   ((∃𝑥𝑥 = 𝑢 𝑦 = 𝑣) → ∃𝑥(𝑥 = 𝑢𝑦 = 𝑣))   )
22:21: (¬ ∀𝑥𝑥 = 𝑦 → ((∃𝑥𝑥 = 𝑢 𝑦 = 𝑣) → ∃𝑥(𝑥 = 𝑢𝑦 = 𝑣)))
23:22: (∀𝑦¬ ∀𝑥𝑥 = 𝑦 → ∀𝑦((∃𝑥 𝑥 = 𝑢𝑦 = 𝑣) → ∃𝑥(𝑥 = 𝑢𝑦 = 𝑣)))
24:: (¬ ∀𝑥𝑥 = 𝑦 → ∀𝑦¬ ∀𝑥𝑥 = 𝑦 )
25:23,24: (¬ ∀𝑥𝑥 = 𝑦 → ∀𝑦((∃𝑥𝑥 = 𝑢𝑦 = 𝑣) → ∃𝑥(𝑥 = 𝑢𝑦 = 𝑣)))
26:14,25: (   ¬ ∀𝑥𝑥 = 𝑦   ▶   𝑦((∃𝑥𝑥 = 𝑢𝑦 = 𝑣) → ∃𝑥(𝑥 = 𝑢𝑦 = 𝑣))   )
27:26: (   ¬ ∀𝑥𝑥 = 𝑦   ▶   (∃𝑦(∃𝑥𝑥 = 𝑢𝑦 = 𝑣) → ∃𝑦𝑥(𝑥 = 𝑢𝑦 = 𝑣))   )
28:8,27: (   ¬ ∀𝑥𝑥 = 𝑦   ▶   𝑦𝑥(𝑥 = 𝑢𝑦 = 𝑣)   )
29:28: (   ¬ ∀𝑥𝑥 = 𝑦   ▶   𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣)   )
qed:29: (¬ ∀𝑥𝑥 = 𝑦 → ∃𝑥𝑦(𝑥 = 𝑢 𝑦 = 𝑣))
(¬ ∀𝑥 𝑥 = 𝑦 → ∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣))
 
Theoremax6e2ndeqVD 44320* The following User's Proof is a Virtual Deduction proof (see wvd1 43980) completed automatically by a Metamath tools program invoking mmj2 and the Metamath Proof Assistant. ax6e2eq 43968 is ax6e2ndeqVD 44320 without virtual deductions and was automatically derived from ax6e2ndeqVD 44320. (Contributed by Alan Sare, 25-Mar-2014.) (Proof modification is discouraged.) (New usage is discouraged.)
1:: (   𝑢𝑣   ▶   𝑢𝑣   )
2:: (   𝑢𝑣   ,   (𝑥 = 𝑢𝑦 = 𝑣)   ▶   ( 𝑥 = 𝑢𝑦 = 𝑣)   )
3:2: (   𝑢𝑣   ,   (𝑥 = 𝑢𝑦 = 𝑣)   ▶   𝑥 = 𝑢   )
4:1,3: (   𝑢𝑣   ,   (𝑥 = 𝑢𝑦 = 𝑣)   ▶   𝑥 𝑣   )
5:2: (   𝑢𝑣   ,   (𝑥 = 𝑢𝑦 = 𝑣)   ▶   𝑦 = 𝑣   )
6:4,5: (   𝑢𝑣   ,   (𝑥 = 𝑢𝑦 = 𝑣)   ▶   𝑥 𝑦   )
7:: (∀𝑥𝑥 = 𝑦𝑥 = 𝑦)
8:7: 𝑥 = 𝑦 → ¬ ∀𝑥𝑥 = 𝑦)
9:: 𝑥 = 𝑦𝑥𝑦)
10:8,9: (𝑥𝑦 → ¬ ∀𝑥𝑥 = 𝑦)
11:6,10: (   𝑢𝑣   ,   (𝑥 = 𝑢𝑦 = 𝑣)   ▶    ¬ ∀𝑥𝑥 = 𝑦   )
12:11: (   𝑢𝑣   ▶   ((𝑥 = 𝑢𝑦 = 𝑣) → ¬ ∀𝑥𝑥 = 𝑦)   )
13:12: (   𝑢𝑣   ▶   𝑥((𝑥 = 𝑢𝑦 = 𝑣) → ¬ ∀𝑥𝑥 = 𝑦)   )
14:13: (   𝑢𝑣   ▶   (∃𝑥(𝑥 = 𝑢𝑦 = 𝑣) → ∃𝑥¬ ∀𝑥𝑥 = 𝑦)   )
15:: (¬ ∀𝑥𝑥 = 𝑦 → ∀𝑥¬ ∀𝑥𝑥 = 𝑦 )
19:15: (∃𝑥¬ ∀𝑥𝑥 = 𝑦 ↔ ¬ ∀𝑥𝑥 = 𝑦)
20:14,19: (   𝑢𝑣   ▶   (∃𝑥(𝑥 = 𝑢𝑦 = 𝑣) → ¬ ∀𝑥𝑥 = 𝑦)   )
21:20: (   𝑢𝑣   ▶   𝑦(∃𝑥(𝑥 = 𝑢 𝑦 = 𝑣) → ¬ ∀𝑥𝑥 = 𝑦)   )
22:21: (   𝑢𝑣   ▶   (∃𝑦𝑥(𝑥 = 𝑢 𝑦 = 𝑣) → ∃𝑦¬ ∀𝑥𝑥 = 𝑦)   )
23:: (∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣) ↔ ∃ 𝑦𝑥(𝑥 = 𝑢𝑦 = 𝑣))
24:22,23: (   𝑢𝑣   ▶   (∃𝑥𝑦(𝑥 = 𝑢 𝑦 = 𝑣) → ∃𝑦¬ ∀𝑥𝑥 = 𝑦)   )
25:: (¬ ∀𝑥𝑥 = 𝑦 → ∀𝑦¬ ∀𝑥𝑥 = 𝑦 )
26:25: (∃𝑦¬ ∀𝑥𝑥 = 𝑦 → ∃𝑦𝑦¬ 𝑥𝑥 = 𝑦)
260:: (∀𝑦¬ ∀𝑥𝑥 = 𝑦 → ∀𝑦𝑦¬ 𝑥𝑥 = 𝑦)
27:260: (∃𝑦𝑦¬ ∀𝑥𝑥 = 𝑦 ↔ ∀𝑦¬ 𝑥𝑥 = 𝑦)
270:26,27: (∃𝑦¬ ∀𝑥𝑥 = 𝑦 → ∀𝑦¬ ∀𝑥 𝑥 = 𝑦)
28:: (∀𝑦¬ ∀𝑥𝑥 = 𝑦 → ¬ ∀𝑥𝑥 = 𝑦 )
29:270,28: (∃𝑦¬ ∀𝑥𝑥 = 𝑦 → ¬ ∀𝑥𝑥 = 𝑦 )
30:24,29: (   𝑢𝑣   ▶   (∃𝑥𝑦(𝑥 = 𝑢 𝑦 = 𝑣) → ¬ ∀𝑥𝑥 = 𝑦)   )
31:30: (   𝑢𝑣   ▶   (∃𝑥𝑦(𝑥 = 𝑢 𝑦 = 𝑣) → (¬ ∀𝑥𝑥 = 𝑦𝑢 = 𝑣))   )
32:31: (𝑢𝑣 → (∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣) → (¬ ∀𝑥𝑥 = 𝑦𝑢 = 𝑣)))
33:: (   𝑢 = 𝑣   ▶   𝑢 = 𝑣   )
34:33: (   𝑢 = 𝑣   ▶   (∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣) → 𝑢 = 𝑣)   )
35:34: (   𝑢 = 𝑣   ▶   (∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣) → (¬ ∀𝑥𝑥 = 𝑦𝑢 = 𝑣))   )
36:35: (𝑢 = 𝑣 → (∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣) → (¬ ∀𝑥𝑥 = 𝑦𝑢 = 𝑣)))
37:: (𝑢 = 𝑣𝑢𝑣)
38:32,36,37: (∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣) → ( ¬ ∀𝑥𝑥 = 𝑦𝑢 = 𝑣))
39:: (∀𝑥𝑥 = 𝑦 → (𝑢 = 𝑣 → ∃𝑥𝑦 (𝑥 = 𝑢𝑦 = 𝑣)))
40:: (¬ ∀𝑥𝑥 = 𝑦 → ∃𝑥𝑦(𝑥 = 𝑢 𝑦 = 𝑣))
41:40: (¬ ∀𝑥𝑥 = 𝑦 → (𝑢 = 𝑣 → ∃𝑥 𝑦(𝑥 = 𝑢𝑦 = 𝑣)))
42:: (∀𝑥𝑥 = 𝑦 ∨ ¬ ∀𝑥𝑥 = 𝑦)
43:39,41,42: (𝑢 = 𝑣 → ∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣 ))
44:40,43: ((¬ ∀𝑥𝑥 = 𝑦𝑢 = 𝑣) → ∃𝑥 𝑦(𝑥 = 𝑢𝑦 = 𝑣))
qed:38,44: ((¬ ∀𝑥𝑥 = 𝑦𝑢 = 𝑣) ↔ ∃𝑥 𝑦(𝑥 = 𝑢𝑦 = 𝑣))
((¬ ∀𝑥 𝑥 = 𝑦𝑢 = 𝑣) ↔ ∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣))
 
Theorem2sb5ndVD 44321* The following User's Proof is a Virtual Deduction proof (see wvd1 43980) completed automatically by a Metamath tools program invoking mmj2 and the Metamath Proof Assistant. 2sb5nd 43971 is 2sb5ndVD 44321 without virtual deductions and was automatically derived from 2sb5ndVD 44321. (Contributed by Alan Sare, 30-Apr-2014.) (Proof modification is discouraged.) (New usage is discouraged.)
1:: (((𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][ 𝑣 / 𝑦]𝜑) ↔ ((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑))
2:1: (∃𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑) ↔ ∃𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑))
3:: ([𝑣 / 𝑦]𝜑 → ∀𝑦[𝑣 / 𝑦]𝜑)
4:3: [𝑢 / 𝑥]([𝑣 / 𝑦]𝜑 → ∀𝑦[𝑣 / 𝑦]𝜑)
5:4: ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 → [𝑢 / 𝑥] 𝑦[𝑣 / 𝑦]𝜑)
6:: (   ¬ ∀𝑥𝑥 = 𝑦   ▶   ¬ ∀𝑥𝑥 = 𝑦   )
7:: (∀𝑦𝑦 = 𝑥 → ∀𝑥𝑥 = 𝑦)
8:7: (¬ ∀𝑥𝑥 = 𝑦 → ¬ ∀𝑦𝑦 = 𝑥)
9:6,8: (   ¬ ∀𝑥𝑥 = 𝑦   ▶   ¬ ∀𝑦𝑦 = 𝑥   )
10:9: ([𝑢 / 𝑥]∀𝑦[𝑣 / 𝑦]𝜑 ↔ ∀ 𝑦[𝑢 / 𝑥][𝑣 / 𝑦]𝜑)
11:5,10: ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 → ∀𝑦[𝑢 / 𝑥][𝑣 / 𝑦]𝜑)
12:11: (¬ ∀𝑥𝑥 = 𝑦 → ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 → ∀𝑦[𝑢 / 𝑥][𝑣 / 𝑦]𝜑))
13:: ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 → ∀𝑥[𝑢 / 𝑥][𝑣 / 𝑦]𝜑)
14:: (   𝑥𝑥 = 𝑦   ▶   𝑥𝑥 = 𝑦   )
15:14: (   𝑥𝑥 = 𝑦   ▶   (∀𝑥[𝑢 / 𝑥][ 𝑣 / 𝑦]𝜑 → ∀𝑦[𝑢 / 𝑥][𝑣 / 𝑦]𝜑)   )
16:13,15: (   𝑥𝑥 = 𝑦   ▶   ([𝑢 / 𝑥][𝑣 / 𝑦 ]𝜑 → ∀𝑦[𝑢 / 𝑥][𝑣 / 𝑦]𝜑)   )
17:16: (∀𝑥𝑥 = 𝑦 → ([𝑢 / 𝑥][𝑣 / 𝑦] 𝜑 → ∀𝑦[𝑢 / 𝑥][𝑣 / 𝑦]𝜑))
19:12,17: ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 → ∀𝑦[𝑢 / 𝑥][𝑣 / 𝑦]𝜑)
20:19: (∃𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑) ↔ (∃𝑦(𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑))
21:2,20: (∃𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑) ↔ (∃𝑦(𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑))
22:21: (∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑) ↔ ∃𝑥(∃𝑦(𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑))
23:13: (∃𝑥(∃𝑦(𝑥 = 𝑢𝑦 = 𝑣) ∧ [ 𝑢 / 𝑥][𝑣 / 𝑦]𝜑) ↔ (∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑))
24:22,23: ((∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣) ∧ [ 𝑢 / 𝑥][𝑣 / 𝑦]𝜑) ↔ ∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑))
240:24: ((∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣) ∧ ( 𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑)) ↔ (∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣) ∧ ∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑)))
241:: ((∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣) ∧ ( 𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑)) ↔ (∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑))
242:241,240: ((∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣) ∧ [ 𝑢 / 𝑥][𝑣 / 𝑦]𝜑) ↔ (∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑)))
243:: ((∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣) → ( [𝑢 / 𝑥][𝑣 / 𝑦]𝜑 ↔ ∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑))) ↔ ((∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑) ↔ (∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑))))
25:242,243: (∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣) → ([ 𝑢 / 𝑥][𝑣 / 𝑦]𝜑 ↔ ∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑)))
26:: ((¬ ∀𝑥𝑥 = 𝑦𝑢 = 𝑣) ↔ ∃𝑥 𝑦(𝑥 = 𝑢𝑦 = 𝑣))
qed:25,26: ((¬ ∀𝑥𝑥 = 𝑦𝑢 = 𝑣) → ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 ↔ ∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑)))
((¬ ∀𝑥 𝑥 = 𝑦𝑢 = 𝑣) → ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 ↔ ∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑)))
 
Theorem2uasbanhVD 44322* The following User's Proof is a Virtual Deduction proof (see wvd1 43980) completed automatically by a Metamath tools program invoking mmj2 and the Metamath Proof Assistant. 2uasbanh 43972 is 2uasbanhVD 44322 without virtual deductions and was automatically derived from 2uasbanhVD 44322. (Contributed by Alan Sare, 31-May-2014.) (Proof modification is discouraged.) (New usage is discouraged.)
h1:: (𝜒 ↔ (∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑) ∧ ∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜓)))
100:1: (𝜒 → (∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑) ∧ ∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜓)))
2:100: (   𝜒   ▶   (∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑) ∧ ∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜓))   )
3:2: (   𝜒   ▶   𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑)   )
4:3: (   𝜒   ▶   𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣 )   )
5:4: (   𝜒   ▶   (¬ ∀𝑥𝑥 = 𝑦𝑢 = 𝑣)    )
6:5: (   𝜒   ▶   ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 ↔ ∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑))   )
7:3,6: (   𝜒   ▶   [𝑢 / 𝑥][𝑣 / 𝑦]𝜑   )
8:2: (   𝜒   ▶   𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜓)   )
9:5: (   𝜒   ▶   ([𝑢 / 𝑥][𝑣 / 𝑦]𝜓 ↔ ∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜓))   )
10:8,9: (   𝜒   ▶   [𝑢 / 𝑥][𝑣 / 𝑦]𝜓   )
101:: ([𝑣 / 𝑦](𝜑𝜓) ↔ ([𝑣 / 𝑦]𝜑 ∧ [𝑣 / 𝑦]𝜓))
102:101: ([𝑢 / 𝑥][𝑣 / 𝑦](𝜑𝜓) ↔ [𝑢 / 𝑥]([𝑣 / 𝑦]𝜑 ∧ [𝑣 / 𝑦]𝜓))
103:: ([𝑢 / 𝑥]([𝑣 / 𝑦]𝜑 ∧ [𝑣 / 𝑦 ]𝜓) ↔ ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜓))
104:102,103: ([𝑢 / 𝑥][𝑣 / 𝑦](𝜑𝜓) ↔ ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜓))
11:7,10,104: (   𝜒   ▶   [𝑢 / 𝑥][𝑣 / 𝑦](𝜑 𝜓)   )
110:5: (   𝜒   ▶   ([𝑢 / 𝑥][𝑣 / 𝑦](𝜑 𝜓) ↔ ∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ (𝜑𝜓)))   )
12:11,110: (   𝜒   ▶   𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ (𝜑𝜓))   )
120:12: (𝜒 → ∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣 ) ∧ (𝜑𝜓)))
13:1,120: ((∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑) ∧ ∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜓)) → 𝑥𝑦((𝑥 = 𝑢 𝑦 = 𝑣) ∧ (𝜑𝜓)))
14:: (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ (𝜑𝜓 ))   ▶   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ (𝜑𝜓))   )
15:14: (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ (𝜑𝜓 ))   ▶   (𝑥 = 𝑢𝑦 = 𝑣)   )
16:14: (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ (𝜑𝜓 ))   ▶   (𝜑𝜓)   )
17:16: (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ (𝜑𝜓 ))   ▶   𝜑   )
18:15,17: (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ (𝜑𝜓 ))   ▶   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑)   )
19:18: (((𝑥 = 𝑢𝑦 = 𝑣) ∧ (𝜑𝜓 )) → ((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑))
20:19: (∃𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ (𝜑 𝜓)) → ∃𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑))
21:20: (∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ ( 𝜑𝜓)) → ∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑))
22:16: (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ (𝜑𝜓 ))   ▶   𝜓   )
23:15,22: (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ (𝜑𝜓 ))   ▶   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜓)   )
24:23: (((𝑥 = 𝑢𝑦 = 𝑣) ∧ (𝜑𝜓 )) → ((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜓))
25:24: (∃𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ (𝜑 𝜓)) → ∃𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜓))
26:25: (∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ ( 𝜑𝜓)) → ∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜓))
27:21,26: (∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ ( 𝜑𝜓)) → (∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑) ∧ 𝑥𝑦( (𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜓)))
qed:13,27: (∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ ( 𝜑𝜓)) ↔ (∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑) ∧ 𝑥𝑦( (𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜓)))
(𝜒 ↔ (∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑) ∧ ∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜓)))       (∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ (𝜑𝜓)) ↔ (∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑) ∧ ∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜓)))
 
Theoreme2ebindVD 44323 The following User's Proof is a Virtual Deduction proof (see wvd1 43980) completed automatically by a Metamath tools program invoking mmj2 and the Metamath Proof Assistant. e2ebind 43974 is e2ebindVD 44323 without virtual deductions and was automatically derived from e2ebindVD 44323.
1:: (𝜑𝜑)
2:1: (∀𝑦𝑦 = 𝑥 → (𝜑𝜑))
3:2: (∀𝑦𝑦 = 𝑥 → (∃𝑦𝜑 ↔ ∃𝑥𝜑 ))
4:: (   𝑦𝑦 = 𝑥   ▶   𝑦𝑦 = 𝑥   )
5:3,4: (   𝑦𝑦 = 𝑥   ▶   (∃𝑦𝜑 ↔ ∃𝑥 𝜑)   )
6:: (∀𝑦𝑦 = 𝑥 → ∀𝑦𝑦𝑦 = 𝑥)
7:5,6: (   𝑦𝑦 = 𝑥   ▶   𝑦(∃𝑦𝜑 𝑥𝜑)   )
8:7: (   𝑦𝑦 = 𝑥   ▶   (∃𝑦𝑦𝜑 𝑦𝑥𝜑)   )
9:: (∃𝑦𝑥𝜑 ↔ ∃𝑥𝑦𝜑)
10:8,9: (   𝑦𝑦 = 𝑥   ▶   (∃𝑦𝑦𝜑 𝑥𝑦𝜑)   )
11:: (∃𝑦𝜑 → ∀𝑦𝑦𝜑)
12:11: (∃𝑦𝑦𝜑 ↔ ∃𝑦𝜑)
13:10,12: (   𝑦𝑦 = 𝑥   ▶   (∃𝑥𝑦𝜑 𝑦𝜑)   )
14:13: (∀𝑦𝑦 = 𝑥 → (∃𝑥𝑦𝜑 ↔ ∃ 𝑦𝜑))
15:: (∀𝑦𝑦 = 𝑥 ↔ ∀𝑥𝑥 = 𝑦)
qed:14,15: (∀𝑥𝑥 = 𝑦 → (∃𝑥𝑦𝜑 ↔ ∃ 𝑦𝜑))
(Contributed by Alan Sare, 27-Nov-2014.) (Proof modification is discouraged.) (New usage is discouraged.)
(∀𝑥 𝑥 = 𝑦 → (∃𝑥𝑦𝜑 ↔ ∃𝑦𝜑))
 
21.39.8  Virtual Deduction transcriptions of textbook proofs
 
Theoremsb5ALTVD 44324* The following User's Proof is a Natural Deduction Sequent Calculus transcription of the Fitch-style Natural Deduction proof of Unit 20 Excercise 3.a., which is sb5 2260, found in the "Answers to Starred Exercises" on page 457 of "Understanding Symbolic Logic", Fifth Edition (2008), by Virginia Klenk. The same proof may also be interpreted as a Virtual Deduction Hilbert-style axiomatic proof. It was completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. sb5ALT 43936 is sb5ALTVD 44324 without virtual deductions and was automatically derived from sb5ALTVD 44324.
1:: (   [𝑦 / 𝑥]𝜑   ▶   [𝑦 / 𝑥]𝜑   )
2:: [𝑦 / 𝑥]𝑥 = 𝑦
3:1,2: (   [𝑦 / 𝑥]𝜑   ▶   [𝑦 / 𝑥](𝑥 = 𝑦 𝜑)   )
4:3: (   [𝑦 / 𝑥]𝜑   ▶   𝑥(𝑥 = 𝑦𝜑 )   )
5:4: ([𝑦 / 𝑥]𝜑 → ∃𝑥(𝑥 = 𝑦𝜑) )
6:: (   𝑥(𝑥 = 𝑦𝜑)   ▶   𝑥(𝑥 = 𝑦𝜑)   )
7:: (   𝑥(𝑥 = 𝑦𝜑)   ,   (𝑥 = 𝑦𝜑 )   ▶   (𝑥 = 𝑦𝜑)   )
8:7: (   𝑥(𝑥 = 𝑦𝜑)   ,   (𝑥 = 𝑦𝜑 )   ▶   𝜑   )
9:7: (   𝑥(𝑥 = 𝑦𝜑)   ,   (𝑥 = 𝑦𝜑 )   ▶   𝑥 = 𝑦   )
10:8,9: (   𝑥(𝑥 = 𝑦𝜑)   ,   (𝑥 = 𝑦𝜑 )   ▶   [𝑦 / 𝑥]𝜑   )
101:: ([𝑦 / 𝑥]𝜑 → ∀𝑥[𝑦 / 𝑥]𝜑)
11:101,10: (∃𝑥(𝑥 = 𝑦𝜑) → [𝑦 / 𝑥]𝜑 )
12:5,11: (([𝑦 / 𝑥]𝜑 → ∃𝑥(𝑥 = 𝑦𝜑 )) ∧ (∃𝑥(𝑥 = 𝑦𝜑) → [𝑦 / 𝑥]𝜑))
qed:12: ([𝑦 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝑦𝜑) )
(Contributed by Alan Sare, 21-Apr-2013.) (Proof modification is discouraged.) (New usage is discouraged.)
([𝑦 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝑦𝜑))
 
Theoremvk15.4jVD 44325 The following User's Proof is a Natural Deduction Sequent Calculus transcription of the Fitch-style Natural Deduction proof of Unit 15 Excercise 4.f. found in the "Answers to Starred Exercises" on page 442 of "Understanding Symbolic Logic", Fifth Edition (2008), by Virginia Klenk. The same proof may also be interpreted to be a Virtual Deduction Hilbert-style axiomatic proof. It was completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. vk15.4j 43939 is vk15.4jVD 44325 without virtual deductions and was automatically derived from vk15.4jVD 44325. Step numbers greater than 25 are additional steps necessary for the sequent calculus proof not contained in the Fitch-style proof. Otherwise, step i of the User's Proof corresponds to step i of the Fitch-style proof.
h1:: ¬ (∃𝑥¬ 𝜑 ∧ ∃𝑥(𝜓 ¬ 𝜒))
h2:: (∀𝑥𝜒 → ¬ ∃𝑥(𝜃𝜏 ))
h3:: ¬ ∀𝑥(𝜏𝜑)
4:: (   ¬ ∃𝑥¬ 𝜃   ▶   ¬ ∃𝑥¬ 𝜃   )
5:4: (   ¬ ∃𝑥¬ 𝜃   ▶   𝑥𝜃   )
6:3: 𝑥(𝜏 ∧ ¬ 𝜑)
7:: (   ¬ ∃𝑥¬ 𝜃   ,   (𝜏 ∧ ¬ 𝜑)   ▶   (𝜏 ∧ ¬ 𝜑)   )
8:7: (   ¬ ∃𝑥¬ 𝜃   ,   (𝜏 ∧ ¬ 𝜑)   ▶   𝜏   )
9:7: (   ¬ ∃𝑥¬ 𝜃   ,   (𝜏 ∧ ¬ 𝜑)   ▶   ¬ 𝜑   )
10:5: (   ¬ ∃𝑥¬ 𝜃   ▶   𝜃   )
11:10,8: (   ¬ ∃𝑥¬ 𝜃   ,   (𝜏 ∧ ¬ 𝜑)   ▶   (𝜃𝜏)   )
12:11: (   ¬ ∃𝑥¬ 𝜃   ,   (𝜏 ∧ ¬ 𝜑)   ▶   𝑥(𝜃𝜏)   )
13:12: (   ¬ ∃𝑥¬ 𝜃   ,   (𝜏 ∧ ¬ 𝜑)   ▶   ¬ ¬ ∃𝑥(𝜃𝜏)   )
14:2,13: (   ¬ ∃𝑥¬ 𝜃   ,   (𝜏 ∧ ¬ 𝜑)   ▶   ¬ ∀𝑥𝜒   )
140:: (∃𝑥¬ 𝜃 → ∀𝑥𝑥¬ 𝜃 )
141:140: (¬ ∃𝑥¬ 𝜃 → ∀𝑥¬ ∃𝑥 ¬ 𝜃)
142:: (∀𝑥𝜒 → ∀𝑥𝑥𝜒)
143:142: (¬ ∀𝑥𝜒 → ∀𝑥¬ ∀𝑥𝜒 )
144:6,14,141,143: (   ¬ ∃𝑥¬ 𝜃   ▶   ¬ ∀𝑥𝜒    )
15:1: (¬ ∃𝑥¬ 𝜑 ∨ ¬ ∃𝑥(𝜓 ∧ ¬ 𝜒))
16:9: (   ¬ ∃𝑥¬ 𝜃   ,   (𝜏 ∧ ¬ 𝜑)   ▶   𝑥¬ 𝜑   )
161:: (∃𝑥¬ 𝜑 → ∀𝑥𝑥¬ 𝜑 )
162:6,16,141,161: (   ¬ ∃𝑥¬ 𝜃   ▶   𝑥¬ 𝜑    )
17:162: (   ¬ ∃𝑥¬ 𝜃   ▶   ¬ ¬ ∃𝑥 ¬ 𝜑   )
18:15,17: (   ¬ ∃𝑥¬ 𝜃   ▶   ¬ ∃𝑥( 𝜓 ∧ ¬ 𝜒)   )
19:18: (   ¬ ∃𝑥¬ 𝜃   ▶   𝑥(𝜓 𝜒)   )
20:144: (   ¬ ∃𝑥¬ 𝜃   ▶   𝑥¬ 𝜒    )
21:: (   ¬ ∃𝑥¬ 𝜃   ,   ¬ 𝜒   ▶   ¬ 𝜒   )
22:19: (   ¬ ∃𝑥¬ 𝜃   ▶   (𝜓𝜒 )   )
23:21,22: (   ¬ ∃𝑥¬ 𝜃   ,   ¬ 𝜒   ▶   ¬ 𝜓   )
24:23: (   ¬ ∃𝑥¬ 𝜃   ,   ¬ 𝜒   ▶    𝑥¬ 𝜓   )
240:: (∃𝑥¬ 𝜓 → ∀𝑥𝑥¬ 𝜓 )
241:20,24,141,240: (   ¬ ∃𝑥¬ 𝜃   ▶   𝑥¬ 𝜓    )
25:241: (   ¬ ∃𝑥¬ 𝜃   ▶   ¬ ∀𝑥𝜓    )
qed:25: (¬ ∃𝑥¬ 𝜃 → ¬ ∀𝑥𝜓)
(Contributed by Alan Sare, 21-Apr-2013.) (Proof modification is discouraged.) (New usage is discouraged.)
¬ (∃𝑥 ¬ 𝜑 ∧ ∃𝑥(𝜓 ∧ ¬ 𝜒))    &   (∀𝑥𝜒 → ¬ ∃𝑥(𝜃𝜏))    &    ¬ ∀𝑥(𝜏𝜑)       (¬ ∃𝑥 ¬ 𝜃 → ¬ ∀𝑥𝜓)
 
TheoremnotnotrALTVD 44326 The following User's Proof is a Natural Deduction Sequent Calculus transcription of the Fitch-style Natural Deduction proof of Theorem 5 of Section 14 of [Margaris] p. 59 (which is notnotr 130). The same proof may also be interpreted as a Virtual Deduction Hilbert-style axiomatic proof. It was completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. notnotrALT 43940 is notnotrALTVD 44326 without virtual deductions and was automatically derived from notnotrALTVD 44326. Step i of the User's Proof corresponds to step i of the Fitch-style proof.
1:: (   ¬ ¬ 𝜑   ▶   ¬ ¬ 𝜑   )
2:: (¬ ¬ 𝜑 → (¬ 𝜑 → ¬ ¬ ¬ 𝜑))
3:1: (   ¬ ¬ 𝜑   ▶   𝜑 → ¬ ¬ ¬ 𝜑)   )
4:: ((¬ 𝜑 → ¬ ¬ ¬ 𝜑) → (¬ ¬ 𝜑 𝜑))
5:3: (   ¬ ¬ 𝜑   ▶   (¬ ¬ 𝜑𝜑)   )
6:5,1: (   ¬ ¬ 𝜑   ▶   𝜑   )
qed:6: (¬ ¬ 𝜑𝜑)
(Contributed by Alan Sare, 21-Apr-2013.) (Proof modification is discouraged.) (New usage is discouraged.)
(¬ ¬ 𝜑𝜑)
 
Theoremcon3ALTVD 44327 The following User's Proof is a Natural Deduction Sequent Calculus transcription of the Fitch-style Natural Deduction proof of Theorem 7 of Section 14 of [Margaris] p. 60 (which is con3 153). The same proof may also be interpreted to be a Virtual Deduction Hilbert-style axiomatic proof. It was completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. con3ALT2 43941 is con3ALTVD 44327 without virtual deductions and was automatically derived from con3ALTVD 44327. Step i of the User's Proof corresponds to step i of the Fitch-style proof.
1:: (   (𝜑𝜓)   ▶   (𝜑𝜓)   )
2:: (   (𝜑𝜓)   ,   ¬ ¬ 𝜑   ▶   ¬ ¬ 𝜑   )
3:: (¬ ¬ 𝜑𝜑)
4:2: (   (𝜑𝜓)   ,   ¬ ¬ 𝜑   ▶   𝜑   )
5:1,4: (   (𝜑𝜓)   ,   ¬ ¬ 𝜑   ▶   𝜓   )
6:: (𝜓 → ¬ ¬ 𝜓)
7:6,5: (   (𝜑𝜓)   ,   ¬ ¬ 𝜑   ▶   ¬ ¬ 𝜓   )
8:7: (   (𝜑𝜓)   ▶   (¬ ¬ 𝜑 → ¬ ¬ 𝜓 )   )
9:: ((¬ ¬ 𝜑 → ¬ ¬ 𝜓) → (¬ 𝜓 ¬ 𝜑))
10:8: (   (𝜑𝜓)   ▶   𝜓 → ¬ 𝜑)   )
qed:10: ((𝜑𝜓) → (¬ 𝜓 → ¬ 𝜑))
(Contributed by Alan Sare, 21-Apr-2013.) (Proof modification is discouraged.) (New usage is discouraged.)
((𝜑𝜓) → (¬ 𝜓 → ¬ 𝜑))
 
21.39.9  Theorems proved using conjunction-form Virtual Deduction
 
TheoremelpwgdedVD 44328 Membership in a power class. Theorem 86 of [Suppes] p. 47. Derived from elpwg 4601. In form of VD deduction with 𝜑 and 𝜓 as variable virtual hypothesis collections based on Mario Carneiro's metavariable concept. elpwgded 43975 is elpwgdedVD 44328 using conventional notation. (Contributed by Alan Sare, 23-Apr-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
(   𝜑   ▶   𝐴 ∈ V   )    &   (   𝜓   ▶   𝐴𝐵   )       (   (   𝜑   ,   𝜓   )   ▶   𝐴 ∈ 𝒫 𝐵   )
 
Theoremsspwimp 44329 If a class is a subclass of another class, then its power class is a subclass of that other class's power class. Left-to-right implication of Exercise 18 of [TakeutiZaring] p. 18. For the biconditional, see sspwb 5445. The proof sspwimp 44329, using conventional notation, was translated from virtual deduction form, sspwimpVD 44330, using a translation program. (Contributed by Alan Sare, 23-Apr-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝐴𝐵 → 𝒫 𝐴 ⊆ 𝒫 𝐵)
 
TheoremsspwimpVD 44330 The following User's Proof is a Virtual Deduction proof (see wvd1 43980) using conjunction-form virtual hypothesis collections. It was completed manually, but has the potential to be completed automatically by a tools program which would invoke Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. sspwimp 44329 is sspwimpVD 44330 without virtual deductions and was derived from sspwimpVD 44330. (Contributed by Alan Sare, 23-Apr-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
1:: (   𝐴𝐵   ▶   𝐴𝐵   )
2:: (   .............. 𝑥 ∈ 𝒫 𝐴    ▶   𝑥 ∈ 𝒫 𝐴   )
3:2: (   .............. 𝑥 ∈ 𝒫 𝐴    ▶   𝑥𝐴   )
4:3,1: (   (   𝐴𝐵   ,   𝑥 ∈ 𝒫 𝐴   )   ▶   𝑥𝐵   )
5:: 𝑥 ∈ V
6:4,5: (   (   𝐴𝐵   ,   𝑥 ∈ 𝒫 𝐴   )   ▶   𝑥 ∈ 𝒫 𝐵    )
7:6: (   𝐴𝐵   ▶   (𝑥 ∈ 𝒫 𝐴𝑥 ∈ 𝒫 𝐵)    )
8:7: (   𝐴𝐵   ▶   𝑥(𝑥 ∈ 𝒫 𝐴𝑥 𝒫 𝐵)   )
9:8: (   𝐴𝐵   ▶   𝒫 𝐴 ⊆ 𝒫 𝐵   )
qed:9: (𝐴𝐵 → 𝒫 𝐴 ⊆ 𝒫 𝐵)
(𝐴𝐵 → 𝒫 𝐴 ⊆ 𝒫 𝐵)
 
Theoremsspwimpcf 44331 If a class is a subclass of another class, then its power class is a subclass of that other class's power class. Left-to-right implication of Exercise 18 of [TakeutiZaring] p. 18. sspwimpcf 44331, using conventional notation, was translated from its virtual deduction form, sspwimpcfVD 44332, using a translation program. (Contributed by Alan Sare, 13-Jun-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝐴𝐵 → 𝒫 𝐴 ⊆ 𝒫 𝐵)
 
TheoremsspwimpcfVD 44332 The following User's Proof is a Virtual Deduction proof (see wvd1 43980) using conjunction-form virtual hypothesis collections. It was completed automatically by a tools program which would invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. sspwimpcf 44331 is sspwimpcfVD 44332 without virtual deductions and was derived from sspwimpcfVD 44332. The version of completeusersproof.cmd used is capable of only generating conjunction-form unification theorems, not unification deductions. (Contributed by Alan Sare, 13-Jun-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
1:: (   𝐴𝐵   ▶   𝐴𝐵   )
2:: (   ........... 𝑥 ∈ 𝒫 𝐴    ▶   𝑥 ∈ 𝒫 𝐴   )
3:2: (   ........... 𝑥 ∈ 𝒫 𝐴    ▶   𝑥𝐴   )
4:3,1: (   (   𝐴𝐵   ,   𝑥 ∈ 𝒫 𝐴   )   ▶   𝑥𝐵   )
5:: 𝑥 ∈ V
6:4,5: (   (   𝐴𝐵   ,   𝑥 ∈ 𝒫 𝐴   )   ▶   𝑥 ∈ 𝒫 𝐵    )
7:6: (   𝐴𝐵   ▶   (𝑥 ∈ 𝒫 𝐴𝑥 ∈ 𝒫 𝐵)    )
8:7: (   𝐴𝐵   ▶   𝑥(𝑥 ∈ 𝒫 𝐴𝑥 𝒫 𝐵)   )
9:8: (   𝐴𝐵   ▶   𝒫 𝐴 ⊆ 𝒫 𝐵   )
qed:9: (𝐴𝐵 → 𝒫 𝐴 ⊆ 𝒫 𝐵)
(𝐴𝐵 → 𝒫 𝐴 ⊆ 𝒫 𝐵)
 
TheoremsuctrALTcf 44333 The sucessor of a transitive class is transitive. suctrALTcf 44333, using conventional notation, was translated from virtual deduction form, suctrALTcfVD 44334, using a translation program. (Contributed by Alan Sare, 13-Jun-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
(Tr 𝐴 → Tr suc 𝐴)
 
TheoremsuctrALTcfVD 44334 The following User's Proof is a Virtual Deduction proof (see wvd1 43980) using conjunction-form virtual hypothesis collections. The conjunction-form version of completeusersproof.cmd. It allows the User to avoid superflous virtual hypotheses. This proof was completed automatically by a tools program which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. suctrALTcf 44333 is suctrALTcfVD 44334 without virtual deductions and was derived automatically from suctrALTcfVD 44334. The version of completeusersproof.cmd used is capable of only generating conjunction-form unification theorems, not unification deductions. (Contributed by Alan Sare, 13-Jun-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
1:: (   Tr 𝐴   ▶   Tr 𝐴   )
2:: (   ......... (𝑧𝑦𝑦 suc 𝐴)   ▶   (𝑧𝑦𝑦 ∈ suc 𝐴)   )
3:2: (   ......... (𝑧𝑦𝑦 suc 𝐴)   ▶   𝑧𝑦   )
4:: (   ................................... ....... 𝑦𝐴   ▶   𝑦𝐴   )
5:1,3,4: (   (   Tr 𝐴   ,   (𝑧𝑦𝑦 ∈ suc 𝐴) , 𝑦𝐴   )   ▶   𝑧𝐴   )
6:: 𝐴 ⊆ suc 𝐴
7:5,6: (   (   Tr 𝐴   ,   (𝑧𝑦𝑦 ∈ suc 𝐴) , 𝑦𝐴   )   ▶   𝑧 ∈ suc 𝐴   )
8:7: (   (   Tr 𝐴   ,   (𝑧𝑦𝑦 ∈ suc 𝐴)    )   ▶   (𝑦𝐴𝑧 ∈ suc 𝐴)   )
9:: (   ................................... ...... 𝑦 = 𝐴   ▶   𝑦 = 𝐴   )
10:3,9: (   ........ (   (𝑧𝑦𝑦 suc 𝐴), 𝑦 = 𝐴   )   ▶   𝑧𝐴   )
11:10,6: (   ........ (   (𝑧𝑦𝑦 suc 𝐴), 𝑦 = 𝐴   )   ▶   𝑧 ∈ suc 𝐴   )
12:11: (   .......... (𝑧𝑦𝑦 suc 𝐴)   ▶   (𝑦 = 𝐴𝑧 ∈ suc 𝐴)   )
13:2: (   .......... (𝑧𝑦𝑦 suc 𝐴)   ▶   𝑦 ∈ suc 𝐴   )
14:13: (   .......... (𝑧𝑦𝑦 suc 𝐴)   ▶   (𝑦𝐴𝑦 = 𝐴)   )
15:8,12,14: (   (   Tr 𝐴   ,   (𝑧𝑦𝑦 ∈ suc 𝐴)    )   ▶   𝑧 ∈ suc 𝐴   )
16:15: (   Tr 𝐴   ▶   ((𝑧𝑦𝑦 suc 𝐴) → 𝑧 ∈ suc 𝐴)   )
17:16: (   Tr 𝐴   ▶   𝑧𝑦((𝑧 𝑦𝑦 ∈ suc 𝐴) → 𝑧 ∈ suc 𝐴)   )
18:17: (   Tr 𝐴   ▶   Tr suc 𝐴   )
qed:18: (Tr 𝐴 → Tr suc 𝐴)
(Tr 𝐴 → Tr suc 𝐴)
 
21.39.10  Theorems with a VD proof in conventional notation derived from a VD proof
 
TheoremsuctrALT3 44335 The successor of a transitive class is transitive. suctrALT3 44335 is the completed proof in conventional notation of the Virtual Deduction proof https://us.metamath.org/other/completeusersproof/suctralt3vd.html 44335. It was completed manually. The potential for automated derivation from the VD proof exists. See wvd1 43980 for a description of Virtual Deduction. Some sub-theorems of the proof were completed using a unification deduction (e.g., the sub-theorem whose assertion is step 19 used jaoded 43977). Unification deductions employ Mario Carneiro's metavariable concept. Some sub-theorems were completed using a unification theorem (e.g., the sub-theorem whose assertion is step 24 used dftr2 5261) . (Contributed by Alan Sare, 3-Dec-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
(Tr 𝐴 → Tr suc 𝐴)
 
TheoremsspwimpALT 44336 If a class is a subclass of another class, then its power class is a subclass of that other class's power class. Left-to-right implication of Exercise 18 of [TakeutiZaring] p. 18. sspwimpALT 44336 is the completed proof in conventional notation of the Virtual Deduction proof https://us.metamath.org/other/completeusersproof/sspwimpaltvd.html 44336. It was completed manually. The potential for automated derivation from the VD proof exists. See wvd1 43980 for a description of Virtual Deduction. Some sub-theorems of the proof were completed using a unification deduction (e.g., the sub-theorem whose assertion is step 9 used elpwgded 43975). Unification deductions employ Mario Carneiro's metavariable concept. Some sub-theorems were completed using a unification theorem (e.g., the sub-theorem whose assertion is step 5 used elpwi 4605). (Contributed by Alan Sare, 3-Dec-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝐴𝐵 → 𝒫 𝐴 ⊆ 𝒫 𝐵)
 
TheoremunisnALT 44337 A set equals the union of its singleton. Theorem 8.2 of [Quine] p. 53. The User manually input on a mmj2 Proof Worksheet, without labels, all steps of unisnALT 44337 except 1, 11, 15, 21, and 30. With execution of the mmj2 unification command, mmj2 could find labels for all steps except for 2, 12, 16, 22, and 31 (and the then non-existing steps 1, 11, 15, 21, and 30). mmj2 could not find reference theorems for those five steps because the hypothesis field of each of these steps was empty and none of those steps unifies with a theorem in set.mm. Each of these five steps is a semantic variation of a theorem in set.mm and is 2-step provable. mmj2 does not have the ability to automatically generate the semantic variation in set.mm of a theorem in a mmj2 Proof Worksheet unless the theorem in the Proof Worksheet is labeled with a 1-hypothesis deduction whose hypothesis is a theorem in set.mm which unifies with the theorem in the Proof Worksheet. The stepprover.c program, which invokes mmj2, has this capability. stepprover.c automatically generated steps 1, 11, 15, 21, and 30, labeled all steps, and generated the RPN proof of unisnALT 44337. Roughly speaking, stepprover.c added to the Proof Worksheet a labeled duplicate step of each non-unifying theorem for each label in a text file, labels.txt, containing a list of labels provided by the User. Upon mmj2 unification, stepprover.c identified a label for each of the five theorems which 2-step proves it. For unisnALT 44337, the label list is a list of all 1-hypothesis propositional calculus deductions in set.mm. stepproverp.c is the same as stepprover.c except that it intermittently pauses during execution, allowing the User to observe the changes to a text file caused by the execution of particular statements of the program. (Contributed by Alan Sare, 19-Aug-2016.) (Proof modification is discouraged.) (New usage is discouraged.)
𝐴 ∈ V        {𝐴} = 𝐴
 
21.39.11  Theorems with a proof in conventional notation derived from a VD proof

Theorems with a proof in conventional notation automatically derived by completeusersproof.c from a Virtual Deduction User's Proof.

 
TheoremnotnotrALT2 44338 Converse of double negation. Theorem *2.14 of [WhiteheadRussell] p. 102. Proof derived by completeusersproof.c from User's Proof in VirtualDeductionProofs.txt. (Contributed by Alan Sare, 11-Sep-2016.) (Proof modification is discouraged.) (New usage is discouraged.)
(¬ ¬ 𝜑𝜑)
 
TheoremsspwimpALT2 44339 If a class is a subclass of another class, then its power class is a subclass of that other class's power class. Left-to-right implication of Exercise 18 of [TakeutiZaring] p. 18. Proof derived by completeusersproof.c from User's Proof in VirtualDeductionProofs.txt. The User's Proof in html format is displayed in https://us.metamath.org/other/completeusersproof/sspwimpaltvd.html. (Contributed by Alan Sare, 11-Sep-2016.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝐴𝐵 → 𝒫 𝐴 ⊆ 𝒫 𝐵)
 
Theoreme2ebindALT 44340 Absorption of an existential quantifier of a double existential quantifier of non-distinct variables. The proof is derived by completeusersproof.c from User's Proof in VirtualDeductionProofs.txt. The User's Proof in html format is displayed in e2ebindVD 44323. (Contributed by Alan Sare, 11-Sep-2016.) (Proof modification is discouraged.) (New usage is discouraged.)
(∀𝑥 𝑥 = 𝑦 → (∃𝑥𝑦𝜑 ↔ ∃𝑦𝜑))
 
Theoremax6e2ndALT 44341* If at least two sets exist (dtru 5432), then the same is true expressed in an alternate form similar to the form of ax6e 2377. The proof is derived by completeusersproof.c from User's Proof in VirtualDeductionProofs.txt. The User's Proof in html format is displayed in ax6e2ndVD 44319. (Contributed by Alan Sare, 11-Sep-2016.) (Proof modification is discouraged.) (New usage is discouraged.)
(¬ ∀𝑥 𝑥 = 𝑦 → ∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣))
 
Theoremax6e2ndeqALT 44342* "At least two sets exist" expressed in the form of dtru 5432 is logically equivalent to the same expressed in a form similar to ax6e 2377 if dtru 5432 is false implies 𝑢 = 𝑣. Proof derived by completeusersproof.c from User's Proof in VirtualDeductionProofs.txt. The User's Proof in html format is displayed in ax6e2ndeqVD 44320. (Contributed by Alan Sare, 11-Sep-2016.) (Proof modification is discouraged.) (New usage is discouraged.)
((¬ ∀𝑥 𝑥 = 𝑦𝑢 = 𝑣) ↔ ∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣))
 
Theorem2sb5ndALT 44343* Equivalence for double substitution 2sb5 2264 without distinct 𝑥, 𝑦 requirement. 2sb5nd 43971 is derived from 2sb5ndVD 44321. The proof is derived by completeusersproof.c from User's Proof in VirtualDeductionProofs.txt. The User's Proof in html format is displayed in 2sb5ndVD 44321. (Contributed by Alan Sare, 19-Sep-2016.) (Proof modification is discouraged.) (New usage is discouraged.)
((¬ ∀𝑥 𝑥 = 𝑦𝑢 = 𝑣) → ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 ↔ ∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑)))
 
TheoremchordthmALT 44344* The intersecting chords theorem. If points A, B, C, and D lie on a circle (with center Q, say), and the point P is on the interior of the segments AB and CD, then the two products of lengths PA · PB and PC · PD are equal. The Euclidean plane is identified with the complex plane, and the fact that P is on AB and on CD is expressed by the hypothesis that the angles APB and CPD are equal to π. The result is proven by using chordthmlem5 26761 twice to show that PA · PB and PC · PD both equal BQ 2 PQ 2 . This is similar to the proof of the theorem given in Euclid's Elements, where it is Proposition III.35. Proven by David Moews on 28-Feb-2017 as chordthm 26762. https://us.metamath.org/other/completeusersproof/chordthmaltvd.html 26762 is a Virtual Deduction User's Proof transcription of chordthm 26762. That VD User's Proof was input into completeusersproof, automatically generating this chordthmALT 44344 Metamath proof. (Contributed by Alan Sare, 19-Sep-2017.) (Proof modification is discouraged.) (New usage is discouraged.)
𝐹 = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥))))    &   (𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)    &   (𝜑𝐷 ∈ ℂ)    &   (𝜑𝑃 ∈ ℂ)    &   (𝜑𝐴𝑃)    &   (𝜑𝐵𝑃)    &   (𝜑𝐶𝑃)    &   (𝜑𝐷𝑃)    &   (𝜑 → ((𝐴𝑃)𝐹(𝐵𝑃)) = π)    &   (𝜑 → ((𝐶𝑃)𝐹(𝐷𝑃)) = π)    &   (𝜑𝑄 ∈ ℂ)    &   (𝜑 → (abs‘(𝐴𝑄)) = (abs‘(𝐵𝑄)))    &   (𝜑 → (abs‘(𝐴𝑄)) = (abs‘(𝐶𝑄)))    &   (𝜑 → (abs‘(𝐴𝑄)) = (abs‘(𝐷𝑄)))       (𝜑 → ((abs‘(𝑃𝐴)) · (abs‘(𝑃𝐵))) = ((abs‘(𝑃𝐶)) · (abs‘(𝑃𝐷))))
 
Theoremisosctrlem1ALT 44345 Lemma for isosctr 26746. This proof was automatically derived by completeusersproof from its Virtual Deduction proof counterpart https://us.metamath.org/other/completeusersproof/isosctrlem1altvd.html 26746. As it is verified by the Metamath program, isosctrlem1ALT 44345 verifies https://us.metamath.org/other/completeusersproof/isosctrlem1altvd.html 44345. (Contributed by Alan Sare, 22-Apr-2018.) (Proof modification is discouraged.) (New usage is discouraged.)
((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (ℑ‘(log‘(1 − 𝐴))) ≠ π)
 
Theoremiunconnlem2 44346* The indexed union of connected overlapping subspaces sharing a common point is connected. This proof was automatically derived by completeusersproof from its Virtual Deduction proof counterpart https://us.metamath.org/other/completeusersproof/iunconlem2vd.html. As it is verified by the Metamath program, iunconnlem2 44346 verifies https://us.metamath.org/other/completeusersproof/iunconlem2vd.html 44346. (Contributed by Alan Sare, 22-Apr-2018.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝜓 ↔ ((((((𝜑𝑢𝐽) ∧ 𝑣𝐽) ∧ (𝑢 𝑘𝐴 𝐵) ≠ ∅) ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅) ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵)) ∧ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣)))    &   (𝜑𝐽 ∈ (TopOn‘𝑋))    &   ((𝜑𝑘𝐴) → 𝐵𝑋)    &   ((𝜑𝑘𝐴) → 𝑃𝐵)    &   ((𝜑𝑘𝐴) → (𝐽t 𝐵) ∈ Conn)       (𝜑 → (𝐽t 𝑘𝐴 𝐵) ∈ Conn)
 
TheoremiunconnALT 44347* The indexed union of connected overlapping subspaces sharing a common point is connected. This proof was automatically derived by completeusersproof from its Virtual Deduction proof counterpart https://us.metamath.org/other/completeusersproof/iunconaltvd.html. As it is verified by the Metamath program, iunconnALT 44347 verifies https://us.metamath.org/other/completeusersproof/iunconaltvd.html 44347. (Contributed by Alan Sare, 22-Apr-2018.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝜑𝐽 ∈ (TopOn‘𝑋))    &   ((𝜑𝑘𝐴) → 𝐵𝑋)    &   ((𝜑𝑘𝐴) → 𝑃𝐵)    &   ((𝜑𝑘𝐴) → (𝐽t 𝐵) ∈ Conn)       (𝜑 → (𝐽t 𝑘𝐴 𝐵) ∈ Conn)
 
Theoremsineq0ALT 44348 A complex number whose sine is zero is an integer multiple of π. The Virtual Deduction form of the proof is https://us.metamath.org/other/completeusersproof/sineq0altvd.html. The Metamath form of the proof is sineq0ALT 44348. The Virtual Deduction proof is based on Mario Carneiro's revision of Norm Megill's proof of sineq0 26451. The Virtual Deduction proof is verified by automatically transforming it into the Metamath form of the proof using completeusersproof, which is verified by the Metamath program. The proof of https://us.metamath.org/other/completeusersproof/sineq0altro.html 26451 is a form of the completed proof which preserves the Virtual Deduction proof's step numbers and their ordering. (Contributed by Alan Sare, 13-Jun-2018.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝐴 ∈ ℂ → ((sin‘𝐴) = 0 ↔ (𝐴 / π) ∈ ℤ))
 
21.40  Mathbox for Glauco Siliprandi
 
21.40.1  Miscellanea
 
Theoremevth2f 44349* A version of evth2 24879 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
𝑥𝐹    &   𝑦𝐹    &   𝑥𝑋    &   𝑦𝑋    &   𝑋 = 𝐽    &   𝐾 = (topGen‘ran (,))    &   (𝜑𝐽 ∈ Comp)    &   (𝜑𝐹 ∈ (𝐽 Cn 𝐾))    &   (𝜑𝑋 ≠ ∅)       (𝜑 → ∃𝑥𝑋𝑦𝑋 (𝐹𝑥) ≤ (𝐹𝑦))
 
Theoremelunif 44350* A version of eluni 4906 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
𝑥𝐴    &   𝑥𝐵       (𝐴 𝐵 ↔ ∃𝑥(𝐴𝑥𝑥𝐵))
 
Theoremrzalf 44351 A version of rzal 4504 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
𝑥 𝐴 = ∅       (𝐴 = ∅ → ∀𝑥𝐴 𝜑)
 
Theoremfvelrnbf 44352 A version of fvelrnb 6953 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
𝑥𝐴    &   𝑥𝐵    &   𝑥𝐹       (𝐹 Fn 𝐴 → (𝐵 ∈ ran 𝐹 ↔ ∃𝑥𝐴 (𝐹𝑥) = 𝐵))
 
Theoremrfcnpre1 44353 If F is a continuous function with respect to the standard topology, then the preimage A of the values greater than a given extended real B is an open set. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
𝑥𝐵    &   𝑥𝐹    &   𝑥𝜑    &   𝐾 = (topGen‘ran (,))    &   𝑋 = 𝐽    &   𝐴 = {𝑥𝑋𝐵 < (𝐹𝑥)}    &   (𝜑𝐵 ∈ ℝ*)    &   (𝜑𝐹 ∈ (𝐽 Cn 𝐾))       (𝜑𝐴𝐽)
 
Theoremubelsupr 44354* If U belongs to A and U is an upper bound, then U is the sup of A. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
((𝐴 ⊆ ℝ ∧ 𝑈𝐴 ∧ ∀𝑥𝐴 𝑥𝑈) → 𝑈 = sup(𝐴, ℝ, < ))
 
Theoremfsumcnf 44355* A finite sum of functions to complex numbers from a common topological space is continuous, without disjoint var constraint x ph. The class expression for B normally contains free variables k and x to index it. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
𝐾 = (TopOpen‘ℂfld)    &   (𝜑𝐽 ∈ (TopOn‘𝑋))    &   (𝜑𝐴 ∈ Fin)    &   ((𝜑𝑘𝐴) → (𝑥𝑋𝐵) ∈ (𝐽 Cn 𝐾))       (𝜑 → (𝑥𝑋 ↦ Σ𝑘𝐴 𝐵) ∈ (𝐽 Cn 𝐾))
 
Theoremmulltgt0 44356 The product of a negative and a positive number is negative. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
(((𝐴 ∈ ℝ ∧ 𝐴 < 0) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → (𝐴 · 𝐵) < 0)
 
Theoremrspcegf 44357 A version of rspcev 3607 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
𝑥𝜓    &   𝑥𝐴    &   𝑥𝐵    &   (𝑥 = 𝐴 → (𝜑𝜓))       ((𝐴𝐵𝜓) → ∃𝑥𝐵 𝜑)
 
Theoremrabexgf 44358 A version of rabexg 5327 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
𝑥𝐴       (𝐴𝑉 → {𝑥𝐴𝜑} ∈ V)
 
Theoremfcnre 44359 A function continuous with respect to the standard topology, is a real mapping. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
𝐾 = (topGen‘ran (,))    &   𝑇 = 𝐽    &   𝐶 = (𝐽 Cn 𝐾)    &   (𝜑𝐹𝐶)       (𝜑𝐹:𝑇⟶ℝ)
 
Theoremsumsnd 44360* A sum of a singleton is the term. The deduction version of sumsn 15718. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
(𝜑𝑘𝐵)    &   𝑘𝜑    &   ((𝜑𝑘 = 𝑀) → 𝐴 = 𝐵)    &   (𝜑𝑀𝑉)    &   (𝜑𝐵 ∈ ℂ)       (𝜑 → Σ𝑘 ∈ {𝑀}𝐴 = 𝐵)
 
Theoremevthf 44361* A version of evth 24878 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
𝑥𝐹    &   𝑦𝐹    &   𝑥𝑋    &   𝑦𝑋    &   𝑥𝜑    &   𝑦𝜑    &   𝑋 = 𝐽    &   𝐾 = (topGen‘ran (,))    &   (𝜑𝐽 ∈ Comp)    &   (𝜑𝐹 ∈ (𝐽 Cn 𝐾))    &   (𝜑𝑋 ≠ ∅)       (𝜑 → ∃𝑥𝑋𝑦𝑋 (𝐹𝑦) ≤ (𝐹𝑥))
 
Theoremcnfex 44362 The class of continuous functions between two topologies is a set. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝐽 Cn 𝐾) ∈ V)
 
Theoremfnchoice 44363* For a finite set, a choice function exists, without using the axiom of choice. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
(𝐴 ∈ Fin → ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑥 ≠ ∅ → (𝑓𝑥) ∈ 𝑥)))
 
Theoremrefsumcn 44364* A finite sum of continuous real functions, from a common topological space, is continuous. The class expression for B normally contains free variables k and x to index it. See fsumcn 24781 for the analogous theorem on continuous complex functions. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
𝑥𝜑    &   𝐾 = (topGen‘ran (,))    &   (𝜑𝐽 ∈ (TopOn‘𝑋))    &   (𝜑𝐴 ∈ Fin)    &   ((𝜑𝑘𝐴) → (𝑥𝑋𝐵) ∈ (𝐽 Cn 𝐾))       (𝜑 → (𝑥𝑋 ↦ Σ𝑘𝐴 𝐵) ∈ (𝐽 Cn 𝐾))
 
Theoremrfcnpre2 44365 If 𝐹 is a continuous function with respect to the standard topology, then the preimage A of the values smaller than a given extended real 𝐵, is an open set. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
𝑥𝐵    &   𝑥𝐹    &   𝑥𝜑    &   𝐾 = (topGen‘ran (,))    &   𝑋 = 𝐽    &   𝐴 = {𝑥𝑋 ∣ (𝐹𝑥) < 𝐵}    &   (𝜑𝐵 ∈ ℝ*)    &   (𝜑𝐹 ∈ (𝐽 Cn 𝐾))       (𝜑𝐴𝐽)
 
Theoremcncmpmax 44366* When the hypothesis for the extreme value theorem hold, then the sup of the range of the function belongs to the range, it is real and it an upper bound of the range. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
𝑇 = 𝐽    &   𝐾 = (topGen‘ran (,))    &   (𝜑𝐽 ∈ Comp)    &   (𝜑𝐹 ∈ (𝐽 Cn 𝐾))    &   (𝜑𝑇 ≠ ∅)       (𝜑 → (sup(ran 𝐹, ℝ, < ) ∈ ran 𝐹 ∧ sup(ran 𝐹, ℝ, < ) ∈ ℝ ∧ ∀𝑡𝑇 (𝐹𝑡) ≤ sup(ran 𝐹, ℝ, < )))
 
Theoremrfcnpre3 44367* If F is a continuous function with respect to the standard topology, then the preimage A of the values greater than or equal to a given real B is a closed set. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
𝑡𝐹    &   𝐾 = (topGen‘ran (,))    &   𝑇 = 𝐽    &   𝐴 = {𝑡𝑇𝐵 ≤ (𝐹𝑡)}    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐹 ∈ (𝐽 Cn 𝐾))       (𝜑𝐴 ∈ (Clsd‘𝐽))
 
Theoremrfcnpre4 44368* If F is a continuous function with respect to the standard topology, then the preimage A of the values less than or equal to a given real B is a closed set. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
𝑡𝐹    &   𝐾 = (topGen‘ran (,))    &   𝑇 = 𝐽    &   𝐴 = {𝑡𝑇 ∣ (𝐹𝑡) ≤ 𝐵}    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐹 ∈ (𝐽 Cn 𝐾))       (𝜑𝐴 ∈ (Clsd‘𝐽))
 
Theoremsumpair 44369* Sum of two distinct complex values. The class expression for 𝐴 and 𝐵 normally contain free variable 𝑘 to index it. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
(𝜑𝑘𝐷)    &   (𝜑𝑘𝐸)    &   (𝜑𝐴𝑉)    &   (𝜑𝐵𝑊)    &   (𝜑𝐷 ∈ ℂ)    &   (𝜑𝐸 ∈ ℂ)    &   (𝜑𝐴𝐵)    &   ((𝜑𝑘 = 𝐴) → 𝐶 = 𝐷)    &   ((𝜑𝑘 = 𝐵) → 𝐶 = 𝐸)       (𝜑 → Σ𝑘 ∈ {𝐴, 𝐵}𝐶 = (𝐷 + 𝐸))
 
Theoremrfcnnnub 44370* Given a real continuous function 𝐹 defined on a compact topological space, there is always a positive integer that is a strict upper bound of its range. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
𝑡𝐹    &   𝑡𝜑    &   𝐾 = (topGen‘ran (,))    &   (𝜑𝐽 ∈ Comp)    &   𝑇 = 𝐽    &   (𝜑𝑇 ≠ ∅)    &   𝐶 = (𝐽 Cn 𝐾)    &   (𝜑𝐹𝐶)       (𝜑 → ∃𝑛 ∈ ℕ ∀𝑡𝑇 (𝐹𝑡) < 𝑛)
 
Theoremrefsum2cnlem1 44371* This is the core Lemma for refsum2cn 44372: the sum of two continuous real functions (from a common topological space) is continuous. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
𝑥𝐴    &   𝑥𝐹    &   𝑥𝐺    &   𝑥𝜑    &   𝐴 = (𝑘 ∈ {1, 2} ↦ if(𝑘 = 1, 𝐹, 𝐺))    &   𝐾 = (topGen‘ran (,))    &   (𝜑𝐽 ∈ (TopOn‘𝑋))    &   (𝜑𝐹 ∈ (𝐽 Cn 𝐾))    &   (𝜑𝐺 ∈ (𝐽 Cn 𝐾))       (𝜑 → (𝑥𝑋 ↦ ((𝐹𝑥) + (𝐺𝑥))) ∈ (𝐽 Cn 𝐾))
 
Theoremrefsum2cn 44372* The sum of two continuus real functions (from a common topological space) is continuous. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
𝑥𝐹    &   𝑥𝐺    &   𝑥𝜑    &   𝐾 = (topGen‘ran (,))    &   (𝜑𝐽 ∈ (TopOn‘𝑋))    &   (𝜑𝐹 ∈ (𝐽 Cn 𝐾))    &   (𝜑𝐺 ∈ (𝐽 Cn 𝐾))       (𝜑 → (𝑥𝑋 ↦ ((𝐹𝑥) + (𝐺𝑥))) ∈ (𝐽 Cn 𝐾))
 
Theoremadantlllr 44373 Deduction adding a conjunct to antecedent. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
((((𝜑𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏)       (((((𝜑𝜂) ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏)
 
Theorem3adantlr3 44374 Deduction adding a conjunct to antecedent. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
(((𝜑 ∧ (𝜓𝜒)) ∧ 𝜃) → 𝜏)       (((𝜑 ∧ (𝜓𝜒𝜂)) ∧ 𝜃) → 𝜏)
 
Theorem3adantll2 44375 Deduction adding a conjunct to antecedent. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
((((𝜑𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏)       ((((𝜑𝜂𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏)
 
Theorem3adantll3 44376 Deduction adding a conjunct to antecedent. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
((((𝜑𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏)       ((((𝜑𝜓𝜂) ∧ 𝜒) ∧ 𝜃) → 𝜏)
 
Theoremssnel 44377 If not element of a set, then not element of a subset. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
((𝐴𝐵 ∧ ¬ 𝐶𝐵) → ¬ 𝐶𝐴)
 
Theoremsncldre 44378 A singleton is closed w.r.t. the standard topology on the reals. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
(𝐴 ∈ ℝ → {𝐴} ∈ (Clsd‘(topGen‘ran (,))))
 
Theoremn0p 44379 A polynomial with a nonzero coefficient is not the zero polynomial. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
((𝑃 ∈ (Poly‘ℤ) ∧ 𝑁 ∈ ℕ0 ∧ ((coeff‘𝑃)‘𝑁) ≠ 0) → 𝑃 ≠ 0𝑝)
 
Theorempm2.65ni 44380 Inference rule for proof by contradiction. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
𝜑𝜓)    &   𝜑 → ¬ 𝜓)       𝜑
 
Theorempwssfi 44381 Every element of the power set of 𝐴 is finite if and only if 𝐴 is finite. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
(𝐴𝑉 → (𝐴 ∈ Fin ↔ 𝒫 𝐴 ⊆ Fin))
 
Theoremiuneq2df 44382 Equality deduction for indexed union. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
𝑥𝜑    &   ((𝜑𝑥𝐴) → 𝐵 = 𝐶)       (𝜑 𝑥𝐴 𝐵 = 𝑥𝐴 𝐶)
 
Theoremnnfoctb 44383* There exists a mapping from onto any (nonempty) countable set. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
((𝐴 ≼ ω ∧ 𝐴 ≠ ∅) → ∃𝑓 𝑓:ℕ–onto𝐴)
 
Theoremssinss1d 44384 Intersection preserves subclass relationship. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
(𝜑𝐴𝐶)       (𝜑 → (𝐴𝐵) ⊆ 𝐶)
 
Theoremelpwinss 44385 An element of the powerset of 𝐵 intersected with anything, is a subset of 𝐵. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
(𝐴 ∈ (𝒫 𝐵𝐶) → 𝐴𝐵)
 
Theoremunidmex 44386 If 𝐹 is a set, then dom 𝐹 is a set. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
(𝜑𝐹𝑉)    &   𝑋 = dom 𝐹       (𝜑𝑋 ∈ V)
 
Theoremndisj2 44387* A non-disjointness condition. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
(𝑥 = 𝑦𝐵 = 𝐶)       Disj 𝑥𝐴 𝐵 ↔ ∃𝑥𝐴𝑦𝐴 (𝑥𝑦 ∧ (𝐵𝐶) ≠ ∅))
 
Theoremzenom 44388 The set of integer numbers is equinumerous to omega (the set of finite ordinal numbers). (Contributed by Glauco Siliprandi, 17-Aug-2020.)
ℤ ≈ ω
 
Theoremuzwo4 44389* Well-ordering principle: any nonempty subset of an upper set of integers has the least element. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
𝑗𝜓    &   (𝑗 = 𝑘 → (𝜑𝜓))       ((𝑆 ⊆ (ℤ𝑀) ∧ ∃𝑗𝑆 𝜑) → ∃𝑗𝑆 (𝜑 ∧ ∀𝑘𝑆 (𝑘 < 𝑗 → ¬ 𝜓)))
 
Theoremunisn0 44390 The union of the singleton of the empty set is the empty set. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
{∅} = ∅
 
Theoremssin0 44391 If two classes are disjoint, two respective subclasses are disjoint. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
(((𝐴𝐵) = ∅ ∧ 𝐶𝐴𝐷𝐵) → (𝐶𝐷) = ∅)
 
Theoreminabs3 44392 Absorption law for intersection. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
(𝐶𝐵 → ((𝐴𝐵) ∩ 𝐶) = (𝐴𝐶))
 
Theorempwpwuni 44393 Relationship between power class and union. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
(𝐴𝑉 → (𝐴 ∈ 𝒫 𝒫 𝐵 𝐴 ∈ 𝒫 𝐵))
 
Theoremdisjiun2 44394* In a disjoint collection, an indexed union is disjoint from an additional term. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
(𝜑Disj 𝑥𝐴 𝐵)    &   (𝜑𝐶𝐴)    &   (𝜑𝐷 ∈ (𝐴𝐶))    &   (𝑥 = 𝐷𝐵 = 𝐸)       (𝜑 → ( 𝑥𝐶 𝐵𝐸) = ∅)
 
Theorem0pwfi 44395 The empty set is in any power set, and it's finite. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
∅ ∈ (𝒫 𝐴 ∩ Fin)
 
Theoremssinss2d 44396 Intersection preserves subclass relationship. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
(𝜑𝐵𝐶)       (𝜑 → (𝐴𝐵) ⊆ 𝐶)
 
Theoremzct 44397 The set of integer numbers is countable. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
ℤ ≼ ω
 
Theorempwfin0 44398 A finite set always belongs to a power class. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
(𝒫 𝐴 ∩ Fin) ≠ ∅
 
Theoremuzct 44399 An upper integer set is countable. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
𝑍 = (ℤ𝑁)       𝑍 ≼ ω
 
Theoremiunxsnf 44400* A singleton index picks out an instance of an indexed union's argument. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
𝑥𝐶    &   𝐴 ∈ V    &   (𝑥 = 𝐴𝐵 = 𝐶)        𝑥 ∈ {𝐴}𝐵 = 𝐶
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900 450 44901-45000 451 45001-45100 452 45101-45200 453 45201-45300 454 45301-45400 455 45401-45500 456 45501-45600 457 45601-45700 458 45701-45800 459 45801-45900 460 45901-46000 461 46001-46100 462 46101-46200 463 46201-46300 464 46301-46400 465 46401-46500 466 46501-46600 467 46601-46700 468 46701-46800 469 46801-46900 470 46901-47000 471 47001-47100 472 47101-47200 473 47201-47300 474 47301-47400 475 47401-47500 476 47501-47600 477 47601-47700 478 47701-47800 479 47801-47900 480 47901-48000 481 48001-48100 482 48101-48200 483 48201-48210
  Copyright terms: Public domain < Previous  Next >
OSZAR »