Theorem List for Metamath Proof Explorer - 44301-44400 *Has distinct variable
group(s)
Type | Label | Description |
Statement |
|
Theorem | onfrALTlem1VD 44301* |
Virtual deduction proof of onfrALTlem1 43959.
The following User's Proof is a Virtual Deduction proof completed
automatically by the tools program completeusersproof.cmd, which invokes
Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant.
onfrALTlem1 43959 is onfrALTlem1VD 44301 without virtual deductions and was
automatically derived from onfrALTlem1VD 44301.
1:: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , (𝑥 ∈ 𝑎 ∧
(𝑎 ∩ 𝑥) = ∅) ▶ (𝑥 ∈ 𝑎 ∧ (𝑎 ∩ 𝑥) = ∅) )
| 2:1: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , (𝑥 ∈ 𝑎 ∧
(𝑎 ∩ 𝑥) = ∅) ▶ ∃𝑥(𝑥 ∈ 𝑎 ∧ (𝑎 ∩ 𝑥) = ∅) )
| 3:2: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , (𝑥 ∈ 𝑎 ∧
(𝑎 ∩ 𝑥) = ∅) ▶ ∃𝑦[𝑦 / 𝑥](𝑥 ∈ 𝑎 ∧ (𝑎 ∩ 𝑥) = ∅)
)
| 4:: | ⊢ ([𝑦 / 𝑥](𝑥 ∈ 𝑎 ∧ (𝑎 ∩ 𝑥) = ∅
) ↔ (𝑦 ∈ 𝑎 ∧ (𝑎 ∩ 𝑦) = ∅))
| 5:4: | ⊢ ∀𝑦([𝑦 / 𝑥](𝑥 ∈ 𝑎 ∧ (𝑎 ∩ 𝑥)
= ∅) ↔ (𝑦 ∈ 𝑎 ∧ (𝑎 ∩ 𝑦) = ∅))
| 6:5: | ⊢ (∃𝑦[𝑦 / 𝑥](𝑥 ∈ 𝑎 ∧ (𝑎 ∩ 𝑥)
= ∅) ↔ ∃𝑦(𝑦 ∈ 𝑎 ∧ (𝑎 ∩ 𝑦) = ∅))
| 7:3,6: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , (𝑥 ∈ 𝑎 ∧
(𝑎 ∩ 𝑥) = ∅) ▶ ∃𝑦(𝑦 ∈ 𝑎 ∧ (𝑎 ∩ 𝑦) = ∅) )
| 8:: | ⊢ (∃𝑦 ∈ 𝑎(𝑎 ∩ 𝑦) = ∅ ↔ ∃𝑦(
𝑦 ∈ 𝑎 ∧ (𝑎 ∩ 𝑦) = ∅))
| qed:7,8: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , (𝑥 ∈ 𝑎 ∧
(𝑎 ∩ 𝑥) = ∅) ▶ ∃𝑦 ∈ 𝑎(𝑎 ∩ 𝑦) = ∅ )
|
(Contributed by Alan Sare, 22-Jul-2012.) (Proof modification is
discouraged.) (New usage is discouraged.)
|
⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , (𝑥 ∈ 𝑎 ∧ (𝑎 ∩ 𝑥) = ∅) ▶ ∃𝑦 ∈ 𝑎 (𝑎 ∩ 𝑦) = ∅ ) |
|
Theorem | onfrALTVD 44302 |
Virtual deduction proof of onfrALT 43960.
The following User's Proof is a Virtual Deduction proof completed
automatically by the tools program completeusersproof.cmd, which invokes
Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant.
onfrALT 43960 is onfrALTVD 44302 without virtual deductions and was
automatically derived from onfrALTVD 44302.
1:: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , (𝑥 ∈ 𝑎
∧ ¬ (𝑎 ∩ 𝑥) = ∅) ▶ ∃𝑦 ∈ 𝑎(𝑎 ∩ 𝑦) = ∅ )
| 2:: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , (𝑥 ∈ 𝑎
∧ (𝑎 ∩ 𝑥) = ∅) ▶ ∃𝑦 ∈ 𝑎(𝑎 ∩ 𝑦) = ∅ )
| 3:1: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , 𝑥 ∈ 𝑎 ▶
(¬ (𝑎 ∩ 𝑥) = ∅ → ∃𝑦 ∈ 𝑎(𝑎 ∩ 𝑦) = ∅) )
| 4:2: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , 𝑥 ∈ 𝑎 ▶
((𝑎 ∩ 𝑥) = ∅ → ∃𝑦 ∈ 𝑎(𝑎 ∩ 𝑦) = ∅) )
| 5:: | ⊢ ((𝑎 ∩ 𝑥) = ∅ ∨ ¬ (𝑎 ∩ 𝑥) =
∅)
| 6:5,4,3: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , 𝑥 ∈ 𝑎 ▶
∃𝑦 ∈ 𝑎(𝑎 ∩ 𝑦) = ∅ )
| 7:6: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) ▶ (𝑥 ∈ 𝑎
→ ∃𝑦 ∈ 𝑎(𝑎 ∩ 𝑦) = ∅) )
| 8:7: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) ▶ ∀𝑥(𝑥
∈ 𝑎 → ∃𝑦 ∈ 𝑎(𝑎 ∩ 𝑦) = ∅) )
| 9:8: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) ▶ (∃𝑥𝑥
∈ 𝑎 → ∃𝑦 ∈ 𝑎(𝑎 ∩ 𝑦) = ∅) )
| 10:: | ⊢ (𝑎 ≠ ∅ ↔ ∃𝑥𝑥 ∈ 𝑎)
| 11:9,10: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) ▶ (𝑎 ≠
∅ → ∃𝑦 ∈ 𝑎(𝑎 ∩ 𝑦) = ∅) )
| 12:: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) ▶ (𝑎 ⊆
On ∧ 𝑎 ≠ ∅) )
| 13:12: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) ▶ 𝑎 ≠
∅ )
| 14:13,11: | ⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) ▶ ∃𝑦 ∈
𝑎(𝑎 ∩ 𝑦) = ∅ )
| 15:14: | ⊢ ((𝑎 ⊆ On ∧ 𝑎 ≠ ∅) → ∃𝑦 ∈ 𝑎
(𝑎 ∩ 𝑦) = ∅)
| 16:15: | ⊢ ∀𝑎((𝑎 ⊆ On ∧ 𝑎 ≠ ∅) → ∃𝑦
∈ 𝑎(𝑎 ∩ 𝑦) = ∅)
| qed:16: | ⊢ E Fr On
|
(Contributed by Alan Sare, 22-Jul-2012.) (Proof modification is
discouraged.) (New usage is discouraged.)
|
⊢ E Fr
On |
|
Theorem | csbeq2gVD 44303 |
Virtual deduction proof of csbeq2 3894.
The following User's Proof is a Virtual Deduction proof completed
automatically by the tools program completeusersproof.cmd, which invokes
Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant.
csbeq2 3894 is csbeq2gVD 44303 without virtual deductions and was
automatically derived from csbeq2gVD 44303.
1:: | ⊢ ( 𝐴 ∈ 𝑉 ▶ 𝐴 ∈ 𝑉 )
| 2:1: | ⊢ ( 𝐴 ∈ 𝑉 ▶ (∀𝑥𝐵 = 𝐶 → [𝐴 / 𝑥]
𝐵 = 𝐶) )
| 3:1: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ([𝐴 / 𝑥]𝐵 = 𝐶 ↔ ⦋𝐴
/ 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐶) )
| 4:2,3: | ⊢ ( 𝐴 ∈ 𝑉 ▶ (∀𝑥𝐵 = 𝐶 → ⦋𝐴 / 𝑥
⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐶) )
| qed:4: | ⊢ (𝐴 ∈ 𝑉 → (∀𝑥𝐵 = 𝐶 → ⦋𝐴 / 𝑥⦌
𝐵 = ⦋𝐴 / 𝑥⦌𝐶))
|
(Contributed by Alan Sare, 10-Nov-2012.) (Proof modification is
discouraged.) (New usage is discouraged.)
|
⊢ (𝐴 ∈ 𝑉 → (∀𝑥 𝐵 = 𝐶 → ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐶)) |
|
Theorem | csbsngVD 44304 |
Virtual deduction proof of csbsng 4708.
The following User's Proof is a Virtual Deduction proof completed
automatically by the tools program completeusersproof.cmd, which invokes
Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant.
csbsng 4708 is csbsngVD 44304 without virtual deductions and was automatically
derived from csbsngVD 44304.
1:: | ⊢ ( 𝐴 ∈ 𝑉 ▶ 𝐴 ∈ 𝑉 )
| 2:1: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ([𝐴 / 𝑥]𝑦 = 𝐵
↔ ⦋𝐴 / 𝑥⦌𝑦 = ⦋𝐴 / 𝑥⦌𝐵) )
| 3:1: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ⦋𝐴 / 𝑥⦌𝑦 = 𝑦 )
| 4:3: | ⊢ ( 𝐴 ∈ 𝑉 ▶ (⦋𝐴 / 𝑥⦌𝑦 = ⦋𝐴
/ 𝑥⦌𝐵 ↔ 𝑦 = ⦋𝐴 / 𝑥⦌𝐵) )
| 5:2,4: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ([𝐴 / 𝑥]𝑦 = 𝐵
↔ 𝑦 = ⦋𝐴 / 𝑥⦌𝐵) )
| 6:5: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ∀𝑦([𝐴 / 𝑥]𝑦
= 𝐵 ↔ 𝑦 = ⦋𝐴 / 𝑥⦌𝐵) )
| 7:6: | ⊢ ( 𝐴 ∈ 𝑉 ▶ {𝑦 ∣ [𝐴 / 𝑥]𝑦 =
𝐵} = {𝑦 ∣ 𝑦 = ⦋𝐴 / 𝑥⦌𝐵} )
| 8:1: | ⊢ ( 𝐴 ∈ 𝑉 ▶ {𝑦 ∣ [𝐴 / 𝑥]𝑦 =
𝐵} = ⦋𝐴 / 𝑥⦌{𝑦 ∣ 𝑦 = 𝐵} )
| 9:7,8: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ⦋𝐴 / 𝑥⦌{𝑦 ∣ 𝑦
= 𝐵} = {𝑦 ∣ 𝑦 = ⦋𝐴 / 𝑥⦌𝐵} )
| 10:: | ⊢ {𝐵} = {𝑦 ∣ 𝑦 = 𝐵}
| 11:10: | ⊢ ∀𝑥{𝐵} = {𝑦 ∣ 𝑦 = 𝐵}
| 12:1,11: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ⦋𝐴 / 𝑥⦌{𝐵} = ⦋
𝐴 / 𝑥⦌{𝑦 ∣ 𝑦 = 𝐵} )
| 13:9,12: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ⦋𝐴 / 𝑥⦌{𝐵} = {
𝑦 ∣ 𝑦 = ⦋𝐴 / 𝑥⦌𝐵} )
| 14:: | ⊢ {⦋𝐴 / 𝑥⦌𝐵} = {𝑦 ∣ 𝑦 = ⦋𝐴
/ 𝑥⦌𝐵}
| 15:13,14: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ⦋𝐴 / 𝑥⦌{𝐵} = {
⦋𝐴 / 𝑥⦌𝐵} )
| qed:15: | ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌{𝐵} = {⦋
𝐴 / 𝑥⦌𝐵})
|
(Contributed by Alan Sare, 10-Nov-2012.) (Proof modification is
discouraged.) (New usage is discouraged.)
|
⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌{𝐵} = {⦋𝐴 / 𝑥⦌𝐵}) |
|
Theorem | csbxpgVD 44305 |
Virtual deduction proof of csbxp 5771.
The following User's Proof is a Virtual Deduction proof completed
automatically by the tools program completeusersproof.cmd, which invokes
Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant.
csbxp 5771 is csbxpgVD 44305 without virtual deductions and was
automatically derived from csbxpgVD 44305.
1:: | ⊢ ( 𝐴 ∈ 𝑉 ▶ 𝐴 ∈ 𝑉 )
| 2:1: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ([𝐴 / 𝑥]𝑤 ∈ 𝐵 ↔
⦋𝐴 / 𝑥⦌𝑤 ∈ ⦋𝐴 / 𝑥⦌𝐵) )
| 3:1: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ⦋𝐴 / 𝑥⦌𝑤 = 𝑤 )
| 4:3: | ⊢ ( 𝐴 ∈ 𝑉 ▶ (⦋𝐴 / 𝑥⦌𝑤 ∈ ⦋𝐴 /
𝑥⦌𝐵 ↔ 𝑤 ∈ ⦋𝐴 / 𝑥⦌𝐵) )
| 5:2,4: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ([𝐴 / 𝑥]𝑤 ∈ 𝐵 ↔ 𝑤
∈ ⦋𝐴 / 𝑥⦌𝐵) )
| 6:1: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ([𝐴 / 𝑥]𝑦 ∈ 𝐶 ↔
⦋𝐴 / 𝑥⦌𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶) )
| 7:1: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ⦋𝐴 / 𝑥⦌𝑦 = 𝑦 )
| 8:7: | ⊢ ( 𝐴 ∈ 𝑉 ▶ (⦋𝐴 / 𝑥⦌𝑦 ∈ ⦋𝐴 /
𝑥⦌𝐶 ↔ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶) )
| 9:6,8: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ([𝐴 / 𝑥]𝑦 ∈ 𝐶 ↔ 𝑦
∈ ⦋𝐴 / 𝑥⦌𝐶) )
| 10:5,9: | ⊢ ( 𝐴 ∈ 𝑉 ▶ (([𝐴 / 𝑥]𝑤 ∈ 𝐵 ∧
[𝐴 / 𝑥]𝑦 ∈ 𝐶) ↔ (𝑤 ∈ ⦋𝐴 / 𝑥⦌𝐵 ∧
𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶)) )
| 11:1: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ([𝐴 / 𝑥](𝑤 ∈ 𝐵 ∧
𝑦 ∈ 𝐶) ↔ ([𝐴 / 𝑥]𝑤 ∈ 𝐵 ∧ [𝐴 / 𝑥]𝑦 ∈ 𝐶)) )
| 12:10,11: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ([𝐴 / 𝑥](𝑤 ∈ 𝐵 ∧
𝑦 ∈ 𝐶) ↔ (𝑤 ∈ ⦋𝐴 / 𝑥⦌𝐵 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶)) )
| 13:1: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ([𝐴 / 𝑥]𝑧 = 〈𝑤 ,
𝑦〉 ↔ 𝑧 = 〈𝑤, 𝑦〉) )
| 14:12,13: | ⊢ ( 𝐴 ∈ 𝑉 ▶ (([𝐴 / 𝑥]𝑧 = 〈𝑤
, 𝑦〉 ∧ [𝐴 / 𝑥](𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)) ↔ (𝑧 = 〈𝑤, 𝑦〉
∧ (𝑤 ∈ ⦋𝐴 / 𝑥⦌𝐵 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶))) )
| 15:1: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ([𝐴 / 𝑥](𝑧 = 〈𝑤
, 𝑦〉 ∧ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)) ↔ ([𝐴 / 𝑥]𝑧 = 〈𝑤, 𝑦〉
∧ [𝐴 / 𝑥](𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))) )
| 16:14,15: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ([𝐴 / 𝑥](𝑧 = 〈𝑤
, 𝑦〉 ∧ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)) ↔ (𝑧 = 〈𝑤, 𝑦〉 ∧
(𝑤 ∈ ⦋𝐴 / 𝑥⦌𝐵 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶))) )
| 17:16: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ∀𝑦([𝐴 / 𝑥](𝑧 =
〈𝑤, 𝑦〉 ∧ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)) ↔ (𝑧 = 〈𝑤, 𝑦〉 ∧
(𝑤 ∈ ⦋𝐴 / 𝑥⦌𝐵 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶))) )
| 18:17: | ⊢ ( 𝐴 ∈ 𝑉 ▶ (∃𝑦[𝐴 / 𝑥](𝑧 =
〈𝑤, 𝑦〉 ∧ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)) ↔ ∃𝑦(𝑧 = 〈𝑤, 𝑦〉 ∧
(𝑤 ∈ ⦋𝐴 / 𝑥⦌𝐵 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶))) )
| 19:1: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ([𝐴 / 𝑥]∃𝑦(𝑧 =
〈𝑤, 𝑦〉 ∧ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)) ↔ ∃𝑦[𝐴 / 𝑥](𝑧 =
〈𝑤, 𝑦〉 ∧ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))) )
| 20:18,19: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ([𝐴 / 𝑥]∃𝑦(𝑧 =
〈𝑤, 𝑦〉 ∧ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)) ↔ ∃𝑦(𝑧 = 〈𝑤, 𝑦〉 ∧
(𝑤 ∈ ⦋𝐴 / 𝑥⦌𝐵 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶))) )
| 21:20: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ∀𝑤([𝐴 / 𝑥]∃𝑦(
𝑧 = 〈𝑤, 𝑦〉 ∧ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)) ↔ ∃𝑦(𝑧 =
〈𝑤, 𝑦〉 ∧ (𝑤 ∈ ⦋𝐴 / 𝑥⦌𝐵 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶))) )
| 22:21: | ⊢ ( 𝐴 ∈ 𝑉 ▶ (∃𝑤[𝐴 / 𝑥]∃𝑦(
𝑧 = 〈𝑤, 𝑦〉 ∧ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)) ↔ ∃𝑤∃𝑦(𝑧 =
〈𝑤, 𝑦〉 ∧ (𝑤 ∈ ⦋𝐴 / 𝑥⦌𝐵 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶))) )
| 23:1: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ([𝐴 / 𝑥]∃𝑤∃𝑦(
𝑧 = 〈𝑤, 𝑦〉 ∧ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)) ↔ ∃𝑤[𝐴 / 𝑥]∃𝑦
(𝑧 = 〈𝑤, 𝑦〉 ∧ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))) )
| 24:22,23: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ([𝐴 / 𝑥]∃𝑤∃𝑦(
𝑧 = 〈𝑤, 𝑦〉 ∧ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)) ↔ ∃𝑤∃𝑦(𝑧 =
〈𝑤, 𝑦〉 ∧ (𝑤 ∈ ⦋𝐴 / 𝑥⦌𝐵 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶))) )
| 25:24: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ∀𝑧([𝐴 / 𝑥]∃𝑤∃
𝑦(𝑧 = 〈𝑤, 𝑦〉 ∧ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)) ↔ ∃𝑤∃𝑦(𝑧 =
〈𝑤, 𝑦〉 ∧ (𝑤 ∈ ⦋𝐴 / 𝑥⦌𝐵 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶))) )
| 26:25: | ⊢ ( 𝐴 ∈ 𝑉 ▶ {𝑧 ∣ [𝐴 / 𝑥]∃𝑤∃
𝑦(𝑧 = 〈𝑤, 𝑦〉 ∧ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))} = {𝑧 ∣ ∃𝑤∃𝑦(
𝑧 = 〈𝑤, 𝑦〉 ∧ (𝑤 ∈ ⦋𝐴 / 𝑥⦌𝐵 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶))}
)
| 27:1: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ⦋𝐴 / 𝑥⦌{𝑧 ∣ ∃𝑤∃
𝑦(𝑧 = 〈𝑤, 𝑦〉 ∧ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))} = {𝑧 ∣ [𝐴 / 𝑥]
∃𝑤∃𝑦(𝑧 = 〈𝑤, 𝑦〉 ∧ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))} )
| 28:26,27: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ⦋𝐴 / 𝑥⦌{𝑧 ∣ ∃𝑤∃
𝑦(𝑧 = 〈𝑤, 𝑦〉 ∧ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))} = {𝑧 ∣ ∃𝑤∃𝑦(
𝑧 = 〈𝑤, 𝑦〉 ∧ (𝑤 ∈ ⦋𝐴 / 𝑥⦌𝐵 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶))}
)
| 29:: | ⊢ {〈𝑤 , 𝑦〉 ∣ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)}
= {𝑧 ∣ ∃𝑤∃𝑦(𝑧 = 〈𝑤, 𝑦〉 ∧ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))}
| 30:: | ⊢ (𝐵 × 𝐶) = {〈𝑤 , 𝑦〉 ∣ (𝑤 ∈ 𝐵
∧ 𝑦 ∈ 𝐶)}
| 31:29,30: | ⊢ (𝐵 × 𝐶) = {𝑧 ∣ ∃𝑤∃𝑦(𝑧 = 〈𝑤
, 𝑦〉 ∧ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))}
| 32:31: | ⊢ ∀𝑥(𝐵 × 𝐶) = {𝑧 ∣ ∃𝑤∃𝑦(𝑧 =
〈𝑤, 𝑦〉 ∧ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))}
| 33:1,32: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ⦋𝐴 / 𝑥⦌(𝐵 × 𝐶) =
⦋𝐴 / 𝑥⦌{𝑧 ∣ ∃𝑤∃𝑦(𝑧 = 〈𝑤, 𝑦〉 ∧ (𝑤 ∈ 𝐵 ∧
𝑦 ∈ 𝐶))} )
| 34:28,33: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ⦋𝐴 / 𝑥⦌(𝐵 × 𝐶) =
{𝑧 ∣ ∃𝑤∃𝑦(𝑧 = 〈𝑤, 𝑦〉 ∧ (𝑤 ∈ ⦋𝐴 / 𝑥⦌𝐵 ∧
𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶))} )
| 35:: | ⊢ {〈𝑤 , 𝑦〉 ∣ (𝑤 ∈ ⦋𝐴 / 𝑥⦌𝐵 ∧
𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶)} = {𝑧 ∣ ∃𝑤∃𝑦(𝑧 = 〈𝑤, 𝑦〉 ∧
(𝑤 ∈ ⦋𝐴 / 𝑥⦌𝐵 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶))}
| 36:: | ⊢ (⦋𝐴 / 𝑥⦌𝐵 × ⦋𝐴 / 𝑥⦌𝐶) = {
〈𝑤, 𝑦〉 ∣ (𝑤 ∈ ⦋𝐴 / 𝑥⦌𝐵 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶)}
| 37:35,36: | ⊢ (⦋𝐴 / 𝑥⦌𝐵 × ⦋𝐴 / 𝑥⦌𝐶) = {𝑧
∣ ∃𝑤∃𝑦(𝑧 = 〈𝑤, 𝑦〉 ∧ (𝑤 ∈ ⦋𝐴 / 𝑥⦌𝐵 ∧
𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶))}
| 38:34,37: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ⦋𝐴 / 𝑥⦌(𝐵 × 𝐶) =
(⦋𝐴 / 𝑥⦌𝐵 × ⦋𝐴 / 𝑥⦌𝐶) )
| qed:38: | ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌(𝐵 × 𝐶) = (
⦋𝐴 / 𝑥⦌𝐵 × ⦋𝐴 / 𝑥⦌𝐶))
|
(Contributed by Alan Sare, 10-Nov-2012.) (Proof modification is
discouraged.) (New usage is discouraged.)
|
⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌(𝐵 × 𝐶) = (⦋𝐴 / 𝑥⦌𝐵 × ⦋𝐴 / 𝑥⦌𝐶)) |
|
Theorem | csbresgVD 44306 |
Virtual deduction proof of csbres 5982.
The following User's Proof is a Virtual Deduction proof completed
automatically by the tools program completeusersproof.cmd, which invokes
Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant.
csbres 5982 is csbresgVD 44306 without virtual deductions and was
automatically derived from csbresgVD 44306.
1:: | ⊢ ( 𝐴 ∈ 𝑉 ▶ 𝐴 ∈ 𝑉 )
| 2:1: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ⦋𝐴 / 𝑥⦌V = V )
| 3:2: | ⊢ ( 𝐴 ∈ 𝑉 ▶ (⦋𝐴 / 𝑥⦌𝐶 × ⦋𝐴 /
𝑥⦌V) = (⦋𝐴 / 𝑥⦌𝐶 × V) )
| 4:1: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ⦋𝐴 / 𝑥⦌(𝐶 × V) =
(⦋𝐴 / 𝑥⦌𝐶 × ⦋𝐴 / 𝑥⦌V) )
| 5:3,4: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ⦋𝐴 / 𝑥⦌(𝐶 × V) =
(⦋𝐴 / 𝑥⦌𝐶 × V) )
| 6:5: | ⊢ ( 𝐴 ∈ 𝑉 ▶ (⦋𝐴 / 𝑥⦌𝐵 ∩ ⦋𝐴 /
𝑥⦌(𝐶 × V)) =
(⦋𝐴 / 𝑥⦌𝐵 ∩ (⦋𝐴 / 𝑥⦌𝐶 × V)) )
| 7:1: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ⦋𝐴 / 𝑥⦌(𝐵 ∩ (𝐶 ×
V)) = (⦋𝐴 / 𝑥⦌𝐵 ∩ ⦋𝐴 / 𝑥⦌(𝐶 × V)) )
| 8:6,7: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ⦋𝐴 / 𝑥⦌(𝐵 ∩ (𝐶 ×
V)) = (⦋𝐴 / 𝑥⦌𝐵 ∩ (⦋𝐴 / 𝑥⦌𝐶 × V)) )
| 9:: | ⊢ (𝐵 ↾ 𝐶) = (𝐵 ∩ (𝐶 × V))
| 10:9: | ⊢ ∀𝑥(𝐵 ↾ 𝐶) = (𝐵 ∩ (𝐶 × V))
| 11:1,10: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ⦋𝐴 / 𝑥⦌(𝐵 ↾ 𝐶) =
⦋𝐴 / 𝑥⦌(𝐵 ∩ (𝐶 × V)) )
| 12:8,11: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ⦋𝐴 / 𝑥⦌(𝐵 ↾ 𝐶)
= (
⦋𝐴 / 𝑥⦌𝐵 ∩ (⦋𝐴 / 𝑥⦌𝐶 × V)) )
| 13:: | ⊢ (⦋𝐴 / 𝑥⦌𝐵 ↾ ⦋𝐴 / 𝑥⦌𝐶) = (
⦋𝐴 / 𝑥⦌𝐵 ∩ (⦋𝐴 / 𝑥⦌𝐶 × V))
| 14:12,13: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ⦋𝐴 / 𝑥⦌(𝐵 ↾ 𝐶) =
(
⦋𝐴 / 𝑥⦌𝐵 ↾ ⦋𝐴 / 𝑥⦌𝐶) )
| qed:14: | ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌(𝐵 ↾ 𝐶) = (
⦋𝐴 / 𝑥⦌𝐵 ↾ ⦋𝐴 / 𝑥⦌𝐶))
|
(Contributed by Alan Sare, 10-Nov-2012.) (Proof modification is
discouraged.) (New usage is discouraged.)
|
⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌(𝐵 ↾ 𝐶) = (⦋𝐴 / 𝑥⦌𝐵 ↾ ⦋𝐴 / 𝑥⦌𝐶)) |
|
Theorem | csbrngVD 44307 |
Virtual deduction proof of csbrn 6201.
The following User's Proof is a Virtual Deduction proof completed
automatically by the tools program completeusersproof.cmd, which invokes
Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant.
csbrn 6201 is csbrngVD 44307 without virtual deductions and was
automatically derived from csbrngVD 44307.
1:: | ⊢ ( 𝐴 ∈ 𝑉 ▶ 𝐴 ∈ 𝑉 )
| 2:1: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ([𝐴 / 𝑥]〈𝑤 , 𝑦〉
∈ 𝐵 ↔ ⦋𝐴 / 𝑥⦌〈𝑤, 𝑦〉 ∈ ⦋𝐴 / 𝑥⦌𝐵) )
| 3:1: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ⦋𝐴 / 𝑥⦌〈𝑤 , 𝑦〉 =
〈𝑤, 𝑦〉 )
| 4:3: | ⊢ ( 𝐴 ∈ 𝑉 ▶ (⦋𝐴 / 𝑥⦌〈𝑤 , 𝑦〉
∈ ⦋𝐴 / 𝑥⦌𝐵 ↔ 〈𝑤, 𝑦〉 ∈ ⦋𝐴 / 𝑥⦌𝐵) )
| 5:2,4: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ([𝐴 / 𝑥]〈𝑤 , 𝑦〉
∈ 𝐵 ↔ 〈𝑤, 𝑦〉 ∈ ⦋𝐴 / 𝑥⦌𝐵) )
| 6:5: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ∀𝑤([𝐴 / 𝑥]〈𝑤 ,
𝑦〉 ∈ 𝐵 ↔ 〈𝑤, 𝑦〉 ∈ ⦋𝐴 / 𝑥⦌𝐵) )
| 7:6: | ⊢ ( 𝐴 ∈ 𝑉 ▶ (∃𝑤[𝐴 / 𝑥]〈𝑤 ,
𝑦〉 ∈ 𝐵 ↔ ∃𝑤〈𝑤, 𝑦〉 ∈ ⦋𝐴 / 𝑥⦌𝐵) )
| 8:1: | ⊢ ( 𝐴 ∈ 𝑉 ▶ (∃𝑤[𝐴 / 𝑥]〈𝑤 ,
𝑦〉 ∈ 𝐵 ↔ [𝐴 / 𝑥]∃𝑤〈𝑤, 𝑦〉 ∈ 𝐵) )
| 9:7,8: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ([𝐴 / 𝑥]∃𝑤〈𝑤
, 𝑦〉 ∈ 𝐵 ↔ ∃𝑤〈𝑤, 𝑦〉 ∈ ⦋𝐴 / 𝑥⦌𝐵) )
| 10:9: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ∀𝑦([𝐴 / 𝑥]∃𝑤
〈𝑤, 𝑦〉 ∈ 𝐵 ↔ ∃𝑤〈𝑤, 𝑦〉 ∈ ⦋𝐴 / 𝑥⦌𝐵) )
| 11:10: | ⊢ ( 𝐴 ∈ 𝑉 ▶ {𝑦 ∣ [𝐴 / 𝑥]∃𝑤〈
𝑤, 𝑦〉 ∈ 𝐵} = {𝑦 ∣ ∃𝑤〈𝑤, 𝑦〉 ∈ ⦋𝐴 / 𝑥⦌𝐵} )
| 12:1: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ⦋𝐴 / 𝑥⦌{𝑦 ∣ ∃𝑤
〈𝑤, 𝑦〉 ∈ 𝐵} = {𝑦 ∣ [𝐴 / 𝑥]∃𝑤〈𝑤, 𝑦〉 ∈ 𝐵} )
| 13:11,12: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ⦋𝐴 / 𝑥⦌{𝑦 ∣ ∃𝑤
〈𝑤, 𝑦〉 ∈ 𝐵} = {𝑦 ∣ ∃𝑤〈𝑤, 𝑦〉 ∈ ⦋𝐴 / 𝑥⦌𝐵} )
| 14:: | ⊢ ran 𝐵 = {𝑦 ∣ ∃𝑤〈𝑤 , 𝑦〉 ∈ 𝐵}
| 15:14: | ⊢ ∀𝑥ran 𝐵 = {𝑦 ∣ ∃𝑤〈𝑤 , 𝑦〉
∈ 𝐵}
| 16:1,15: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ⦋𝐴 / 𝑥⦌ran 𝐵 = ⦋𝐴 /
𝑥⦌{𝑦 ∣ ∃𝑤〈𝑤, 𝑦〉 ∈ 𝐵} )
| 17:13,16: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ⦋𝐴 / 𝑥⦌ran 𝐵 = {𝑦 ∣
∃𝑤〈𝑤, 𝑦〉 ∈ ⦋𝐴 / 𝑥⦌𝐵} )
| 18:: | ⊢ ran ⦋𝐴 / 𝑥⦌𝐵 = {𝑦 ∣ ∃𝑤〈𝑤
, 𝑦〉 ∈ ⦋𝐴 / 𝑥⦌𝐵}
| 19:17,18: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ⦋𝐴 / 𝑥⦌ran 𝐵 = ran ⦋
𝐴 / 𝑥⦌𝐵 )
| qed:19: | ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌ran 𝐵 = ran ⦋𝐴
/ 𝑥⦌𝐵)
|
(Contributed by Alan Sare, 10-Nov-2012.) (Proof modification is
discouraged.) (New usage is discouraged.)
|
⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌ran 𝐵 = ran ⦋𝐴 / 𝑥⦌𝐵) |
|
Theorem | csbima12gALTVD 44308 |
Virtual deduction proof of csbima12 6076.
The following User's Proof is a Virtual Deduction proof completed
automatically by the tools program completeusersproof.cmd, which invokes
Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant.
csbima12 6076 is csbima12gALTVD 44308 without virtual deductions and was
automatically derived from csbima12gALTVD 44308.
1:: | ⊢ ( 𝐴 ∈ 𝐶 ▶ 𝐴 ∈ 𝐶 )
| 2:1: | ⊢ ( 𝐴 ∈ 𝐶 ▶ ⦋𝐴 / 𝑥⦌(𝐹 ↾ 𝐵) =
(
⦋𝐴 / 𝑥⦌𝐹 ↾ ⦋𝐴 / 𝑥⦌𝐵) )
| 3:2: | ⊢ ( 𝐴 ∈ 𝐶 ▶
ran ⦋𝐴 / 𝑥⦌(𝐹 ↾ 𝐵)
= ran (⦋𝐴 / 𝑥⦌𝐹 ↾ ⦋𝐴 / 𝑥⦌𝐵) )
| 4:1: | ⊢ ( 𝐴 ∈ 𝐶 ▶
⦋𝐴 / 𝑥⦌ran (𝐹 ↾ 𝐵)
= ran ⦋𝐴 / 𝑥⦌(𝐹 ↾ 𝐵) )
| 5:3,4: | ⊢ ( 𝐴 ∈ 𝐶 ▶
⦋𝐴 / 𝑥⦌ran (𝐹 ↾ 𝐵)
= ran (⦋𝐴 / 𝑥⦌𝐹 ↾ ⦋𝐴 / 𝑥⦌𝐵) )
| 6:: | ⊢ (𝐹 “ 𝐵) = ran (𝐹 ↾ 𝐵)
| 7:6: | ⊢ ∀𝑥(𝐹 “ 𝐵) = ran (𝐹 ↾ 𝐵)
| 8:1,7: | ⊢ ( 𝐴 ∈ 𝐶 ▶ ⦋𝐴 / 𝑥⦌(𝐹 “ 𝐵) = ⦋
𝐴 / 𝑥⦌ran (𝐹 ↾ 𝐵) )
| 9:5,8: | ⊢ ( 𝐴 ∈ 𝐶 ▶ ⦋𝐴 / 𝑥⦌(𝐹 “ 𝐵) =
ran (⦋𝐴 / 𝑥⦌𝐹 ↾ ⦋𝐴 / 𝑥⦌𝐵) )
| 10:: | ⊢ (⦋𝐴 / 𝑥⦌𝐹 “ ⦋𝐴 / 𝑥⦌𝐵) = ran
(⦋𝐴 / 𝑥⦌𝐹 ↾ ⦋𝐴 / 𝑥⦌𝐵)
| 11:9,10: | ⊢ ( 𝐴 ∈ 𝐶 ▶ ⦋𝐴 / 𝑥⦌(𝐹 “ 𝐵) = (
⦋𝐴 / 𝑥⦌𝐹 “ ⦋𝐴 / 𝑥⦌𝐵) )
| qed:11: | ⊢ (𝐴 ∈ 𝐶 → ⦋𝐴 / 𝑥⦌(𝐹 “ 𝐵) = (⦋
𝐴 / 𝑥⦌𝐹 “ ⦋𝐴 / 𝑥⦌𝐵))
|
(Contributed by Alan Sare, 10-Nov-2012.) (Proof modification is
discouraged.) (New usage is discouraged.)
|
⊢ (𝐴 ∈ 𝐶 → ⦋𝐴 / 𝑥⦌(𝐹 “ 𝐵) = (⦋𝐴 / 𝑥⦌𝐹 “ ⦋𝐴 / 𝑥⦌𝐵)) |
|
Theorem | csbunigVD 44309 |
Virtual deduction proof of csbuni 4934.
The following User's Proof is a Virtual Deduction proof completed
automatically by the tools program completeusersproof.cmd, which invokes
Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant.
csbuni 4934 is csbunigVD 44309 without virtual deductions and was
automatically derived from csbunigVD 44309.
1:: | ⊢ ( 𝐴 ∈ 𝑉 ▶ 𝐴 ∈ 𝑉 )
| 2:1: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ([𝐴 / 𝑥]𝑧 ∈ 𝑦 ↔ 𝑧
∈ 𝑦) )
| 3:1: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ([𝐴 / 𝑥]𝑦 ∈ 𝐵 ↔ 𝑦
∈ ⦋𝐴 / 𝑥⦌𝐵) )
| 4:2,3: | ⊢ ( 𝐴 ∈ 𝑉 ▶ (([𝐴 / 𝑥]𝑧 ∈ 𝑦 ∧
[𝐴 / 𝑥]𝑦 ∈ 𝐵) ↔ (𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐵)) )
| 5:1: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ([𝐴 / 𝑥](𝑧 ∈ 𝑦 ∧
𝑦 ∈ 𝐵) ↔ ([𝐴 / 𝑥]𝑧 ∈ 𝑦 ∧ [𝐴 / 𝑥]𝑦 ∈ 𝐵)) )
| 6:4,5: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ([𝐴 / 𝑥](𝑧 ∈ 𝑦 ∧
𝑦 ∈ 𝐵) ↔ (𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐵)) )
| 7:6: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ∀𝑦([𝐴 / 𝑥](𝑧 ∈
𝑦 ∧ 𝑦 ∈ 𝐵) ↔ (𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐵)) )
| 8:7: | ⊢ ( 𝐴 ∈ 𝑉 ▶ (∃𝑦[𝐴 / 𝑥](𝑧 ∈
𝑦 ∧ 𝑦 ∈ 𝐵) ↔ ∃𝑦(𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐵)) )
| 9:1: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ([𝐴 / 𝑥]∃𝑦(𝑧 ∈
𝑦 ∧ 𝑦 ∈ 𝐵) ↔ ∃𝑦[𝐴 / 𝑥](𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵)) )
| 10:8,9: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ([𝐴 / 𝑥]∃𝑦(𝑧 ∈
𝑦 ∧ 𝑦 ∈ 𝐵) ↔ ∃𝑦(𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐵)) )
| 11:10: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ∀𝑧([𝐴 / 𝑥]∃𝑦(
𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵) ↔ ∃𝑦(𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐵)) )
| 12:11: | ⊢ ( 𝐴 ∈ 𝑉 ▶ {𝑧 ∣ [𝐴 / 𝑥]∃𝑦(
𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵)} = {𝑧 ∣ ∃𝑦(𝑧 ∈ 𝑦 ∧
𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐵)} )
| 13:1: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ⦋𝐴 / 𝑥⦌{𝑧 ∣ ∃𝑦(𝑧
∈ 𝑦 ∧ 𝑦 ∈ 𝐵)} = {𝑧 ∣ [𝐴 / 𝑥]∃𝑦(𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵)}
)
| 14:12,13: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ⦋𝐴 / 𝑥⦌{𝑧 ∣ ∃𝑦(𝑧
∈ 𝑦 ∧ 𝑦 ∈ 𝐵)} = {𝑧 ∣ ∃𝑦(𝑧 ∈ 𝑦 ∧
𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐵)} )
| 15:: | ⊢ ∪ 𝐵 = {𝑧 ∣ ∃𝑦(𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵)}
| 16:15: | ⊢ ∀𝑥∪ 𝐵 = {𝑧 ∣ ∃𝑦(𝑧 ∈ 𝑦 ∧ 𝑦 ∈
𝐵)}
| 17:1,16: | ⊢ ( 𝐴 ∈ 𝑉 ▶ [𝐴 / 𝑥]∪ 𝐵 = {𝑧 ∣
∃𝑦(𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵)} )
| 18:1,17: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ⦋𝐴 / 𝑥⦌∪ 𝐵 = ⦋𝐴 /
𝑥⦌{𝑧 ∣ ∃𝑦(𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵)} )
| 19:14,18: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ⦋𝐴 / 𝑥⦌∪ 𝐵 = {𝑧 ∣
∃𝑦(𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐵)} )
| 20:: | ⊢ ∪ ⦋𝐴 / 𝑥⦌𝐵 = {𝑧 ∣ ∃𝑦(𝑧 ∈ 𝑦
∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐵)}
| 21:19,20: | ⊢ ( 𝐴 ∈ 𝑉 ▶ ⦋𝐴 / 𝑥⦌∪ 𝐵 = ∪ ⦋𝐴
/ 𝑥⦌𝐵 )
| qed:21: | ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌∪ 𝐵 = ∪ ⦋𝐴 /
𝑥⦌𝐵)
|
(Contributed by Alan Sare, 10-Nov-2012.) (Proof modification is
discouraged.) (New usage is discouraged.)
|
⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌∪
𝐵 = ∪ ⦋𝐴 / 𝑥⦌𝐵) |
|
Theorem | csbfv12gALTVD 44310 |
Virtual deduction proof of csbfv12 6939.
The following User's Proof is a Virtual Deduction proof completed
automatically by the tools program completeusersproof.cmd, which invokes
Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant.
csbfv12 6939 is csbfv12gALTVD 44310 without virtual deductions and was
automatically derived from csbfv12gALTVD 44310.
1:: | ⊢ ( 𝐴 ∈ 𝐶 ▶ 𝐴 ∈ 𝐶 )
| 2:1: | ⊢ ( 𝐴 ∈ 𝐶 ▶ ⦋𝐴 / 𝑥⦌{𝑦} = {
𝑦} )
| 3:1: | ⊢ ( 𝐴 ∈ 𝐶 ▶ ⦋𝐴 / 𝑥⦌(𝐹 “ {𝐵
}) = (⦋𝐴 / 𝑥⦌𝐹 “ ⦋𝐴 / 𝑥⦌{𝐵}) )
| 4:1: | ⊢ ( 𝐴 ∈ 𝐶 ▶ ⦋𝐴 / 𝑥⦌{𝐵} = {
⦋𝐴 / 𝑥⦌𝐵} )
| 5:4: | ⊢ ( 𝐴 ∈ 𝐶 ▶ (⦋𝐴 / 𝑥⦌𝐹 “ ⦋𝐴
/ 𝑥⦌{𝐵}) = (⦋𝐴 / 𝑥⦌𝐹 “ {⦋𝐴 / 𝑥⦌𝐵}) )
| 6:3,5: | ⊢ ( 𝐴 ∈ 𝐶 ▶ ⦋𝐴 / 𝑥⦌(𝐹 “ {𝐵
}) = (⦋𝐴 / 𝑥⦌𝐹 “ {⦋𝐴 / 𝑥⦌𝐵}) )
| 7:1: | ⊢ ( 𝐴 ∈ 𝐶 ▶ ([𝐴 / 𝑥](𝐹 “ {
𝐵}) = {𝑦} ↔ ⦋𝐴 / 𝑥⦌(𝐹 “ {𝐵}) = ⦋𝐴 / 𝑥⦌{𝑦}) )
| 8:6,2: | ⊢ ( 𝐴 ∈ 𝐶 ▶ (⦋𝐴 / 𝑥⦌(𝐹 “ {
𝐵}) = ⦋𝐴 / 𝑥⦌{𝑦} ↔ (⦋𝐴 / 𝑥⦌𝐹 “ {⦋𝐴 / 𝑥⦌𝐵})
= {𝑦}) )
| 9:7,8: | ⊢ ( 𝐴 ∈ 𝐶 ▶ ([𝐴 / 𝑥](𝐹 “ {
𝐵}) = {𝑦} ↔ (⦋𝐴 / 𝑥⦌𝐹 “ {⦋𝐴 / 𝑥⦌𝐵}) = {𝑦})
)
| 10:9: | ⊢ ( 𝐴 ∈ 𝐶 ▶ ∀𝑦([𝐴 / 𝑥](𝐹
“ {𝐵}) = {𝑦} ↔ (⦋𝐴 / 𝑥⦌𝐹 “ {⦋𝐴 / 𝑥⦌𝐵}) =
{𝑦}) )
| 11:10: | ⊢ ( 𝐴 ∈ 𝐶 ▶ {𝑦 ∣ [𝐴 / 𝑥](𝐹
“ {𝐵}) = {𝑦}} = {𝑦 ∣ (⦋𝐴 / 𝑥⦌𝐹 “ {⦋𝐴 / 𝑥⦌𝐵}) =
{𝑦}} )
| 12:1: | ⊢ ( 𝐴 ∈ 𝐶 ▶ ⦋𝐴 / 𝑥⦌{𝑦 ∣ (𝐹
“ {𝐵}) = {𝑦}} = {𝑦 ∣ [𝐴 / 𝑥](𝐹 “ {𝐵}) = {𝑦}} )
| 13:11,12: | ⊢ ( 𝐴 ∈ 𝐶 ▶ ⦋𝐴 / 𝑥⦌{𝑦 ∣ (𝐹
“ {𝐵}) = {𝑦}} = {𝑦 ∣ (⦋𝐴 / 𝑥⦌𝐹 “ {⦋𝐴 / 𝑥⦌𝐵}) =
{𝑦
}} )
| 14:13: | ⊢ ( 𝐴 ∈ 𝐶 ▶ ∪ ⦋𝐴 / 𝑥⦌{𝑦 ∣ (
𝐹 “ {𝐵}) = {𝑦}} = ∪ {𝑦 ∣ (⦋𝐴 / 𝑥⦌𝐹 “
{⦋𝐴 / 𝑥⦌𝐵}) =
{𝑦}} )
| 15:1: | ⊢ ( 𝐴 ∈ 𝐶 ▶ ⦋𝐴 / 𝑥⦌∪ {𝑦 ∣ (
𝐹 “ {𝐵}) = {𝑦}} = ∪ ⦋𝐴 / 𝑥⦌{𝑦 ∣ (𝐹 “ {𝐵}) =
{𝑦}} )
| 16:14,15: | ⊢ ( 𝐴 ∈ 𝐶 ▶ ⦋𝐴 / 𝑥⦌∪ {𝑦 ∣ (
𝐹 “ {𝐵}) = {𝑦}} =
∪ {𝑦 ∣ (⦋𝐴 / 𝑥⦌𝐹 “ {⦋𝐴 / 𝑥⦌𝐵}) =
{𝑦}} )
| 17:: | ⊢ (𝐹‘𝐵) =
∪ {𝑦 ∣ (𝐹 “ {𝐵}) =
{𝑦}}
| 18:17: | ⊢ ∀𝑥(𝐹‘𝐵) = ∪ {𝑦 ∣ (𝐹 “ {𝐵
}) = {𝑦}}
| 19:1,18: | ⊢ ( 𝐴 ∈ 𝐶 ▶ ⦋𝐴 / 𝑥⦌(𝐹‘𝐵)
= ⦋𝐴 / 𝑥⦌∪ {𝑦 ∣ (𝐹 “ {𝐵}) = {𝑦}} )
| 20:16,19: | ⊢ ( 𝐴 ∈ 𝐶 ▶ ⦋𝐴 / 𝑥⦌(𝐹‘𝐵)
= ∪ {𝑦 ∣ (⦋𝐴 / 𝑥⦌𝐹 “ {⦋𝐴 / 𝑥⦌𝐵}) = {𝑦}} )
| 21:: | ⊢ (⦋𝐴 / 𝑥⦌𝐹‘⦋𝐴 / 𝑥⦌𝐵) =
∪ {𝑦 ∣ (⦋𝐴 / 𝑥⦌𝐹 “ {⦋𝐴 / 𝑥⦌𝐵}) = {𝑦}}
| 22:20,21: | ⊢ ( 𝐴 ∈ 𝐶 ▶ ⦋𝐴 / 𝑥⦌(𝐹‘𝐵)
= (⦋𝐴 / 𝑥⦌𝐹‘⦋𝐴 / 𝑥⦌𝐵) )
| qed:22: | ⊢ (𝐴 ∈ 𝐶 → ⦋𝐴 / 𝑥⦌(𝐹‘𝐵) =
(⦋𝐴 / 𝑥⦌𝐹‘⦋𝐴 / 𝑥⦌𝐵))
|
(Contributed by Alan Sare, 10-Nov-2012.) (Proof modification is
discouraged.) (New usage is discouraged.)
|
⊢ (𝐴 ∈ 𝐶 → ⦋𝐴 / 𝑥⦌(𝐹‘𝐵) = (⦋𝐴 / 𝑥⦌𝐹‘⦋𝐴 / 𝑥⦌𝐵)) |
|
Theorem | con5VD 44311 |
Virtual deduction proof of con5 43933.
The following User's Proof is a Virtual Deduction proof completed
automatically by the tools program completeusersproof.cmd, which invokes
Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant.
con5 43933 is con5VD 44311 without virtual deductions and was automatically
derived from con5VD 44311.
1:: | ⊢ ( (𝜑 ↔ ¬ 𝜓) ▶ (𝜑 ↔ ¬ 𝜓) )
| 2:1: | ⊢ ( (𝜑 ↔ ¬ 𝜓) ▶ (¬ 𝜓 → 𝜑) )
| 3:2: | ⊢ ( (𝜑 ↔ ¬ 𝜓) ▶ (¬ 𝜑 → ¬ ¬ 𝜓
) )
| 4:: | ⊢ (𝜓 ↔ ¬ ¬ 𝜓)
| 5:3,4: | ⊢ ( (𝜑 ↔ ¬ 𝜓) ▶ (¬ 𝜑 → 𝜓) )
| qed:5: | ⊢ ((𝜑 ↔ ¬ 𝜓) → (¬ 𝜑 → 𝜓))
|
(Contributed by Alan Sare, 21-Apr-2013.) (Proof modification is
discouraged.) (New usage is discouraged.)
|
⊢ ((𝜑 ↔ ¬ 𝜓) → (¬ 𝜑 → 𝜓)) |
|
Theorem | relopabVD 44312 |
Virtual deduction proof of relopab 5820.
The following User's Proof is a Virtual Deduction proof completed
automatically by the tools program completeusersproof.cmd, which invokes
Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant.
relopab 5820 is relopabVD 44312 without virtual deductions and was
automatically derived from relopabVD 44312.
1:: | ⊢ ( 𝑦 = 𝑣 ▶ 𝑦 = 𝑣 )
| 2:1: | ⊢ ( 𝑦 = 𝑣 ▶ 〈𝑥 , 𝑦〉 = 〈𝑥 , 𝑣
〉 )
| 3:: | ⊢ ( 𝑦 = 𝑣 , 𝑥 = 𝑢 ▶ 𝑥 = 𝑢 )
| 4:3: | ⊢ ( 𝑦 = 𝑣 , 𝑥 = 𝑢 ▶ 〈𝑥 , 𝑣〉 = 〈
𝑢, 𝑣〉 )
| 5:2,4: | ⊢ ( 𝑦 = 𝑣 , 𝑥 = 𝑢 ▶ 〈𝑥 , 𝑦〉 = 〈
𝑢, 𝑣〉 )
| 6:5: | ⊢ ( 𝑦 = 𝑣 , 𝑥 = 𝑢 ▶ (𝑧 = 〈𝑥 , 𝑦
〉 → 𝑧 = 〈𝑢, 𝑣〉) )
| 7:6: | ⊢ ( 𝑦 = 𝑣 ▶ (𝑥 = 𝑢 → (𝑧 = 〈𝑥 ,
𝑦〉 → 𝑧 = 〈𝑢, 𝑣〉)) )
| 8:7: | ⊢ (𝑦 = 𝑣 → (𝑥 = 𝑢 → (𝑧 = 〈𝑥 , 𝑦
〉 → 𝑧 = 〈𝑢, 𝑣〉)))
| 9:8: | ⊢ (∃𝑣𝑦 = 𝑣 → ∃𝑣(𝑥 = 𝑢 → (𝑧
= 〈𝑥, 𝑦〉 → 𝑧 = 〈𝑢, 𝑣〉)))
| 90:: | ⊢ (𝑣 = 𝑦 ↔ 𝑦 = 𝑣)
| 91:90: | ⊢ (∃𝑣𝑣 = 𝑦 ↔ ∃𝑣𝑦 = 𝑣)
| 92:: | ⊢ ∃𝑣𝑣 = 𝑦
| 10:91,92: | ⊢ ∃𝑣𝑦 = 𝑣
| 11:9,10: | ⊢ ∃𝑣(𝑥 = 𝑢 → (𝑧 = 〈𝑥 , 𝑦〉 →
𝑧 = 〈𝑢, 𝑣〉))
| 12:11: | ⊢ (𝑥 = 𝑢 → ∃𝑣(𝑧 = 〈𝑥 , 𝑦〉 →
𝑧 = 〈𝑢, 𝑣〉))
| 13:: | ⊢ (∃𝑣(𝑧 = 〈𝑥 , 𝑦〉 → 𝑧 = 〈𝑢
, 𝑣〉) → (𝑧 = 〈𝑥, 𝑦〉 → ∃𝑣𝑧 = 〈𝑢, 𝑣〉))
| 14:12,13: | ⊢ (𝑥 = 𝑢 → (𝑧 = 〈𝑥 , 𝑦〉 → ∃𝑣
𝑧 = 〈𝑢, 𝑣〉))
| 15:14: | ⊢ (∃𝑢𝑥 = 𝑢 → ∃𝑢(𝑧 = 〈𝑥 , 𝑦
〉 → ∃𝑣𝑧 = 〈𝑢, 𝑣〉))
| 150:: | ⊢ (𝑢 = 𝑥 ↔ 𝑥 = 𝑢)
| 151:150: | ⊢ (∃𝑢𝑢 = 𝑥 ↔ ∃𝑢𝑥 = 𝑢)
| 152:: | ⊢ ∃𝑢𝑢 = 𝑥
| 16:151,152: | ⊢ ∃𝑢𝑥 = 𝑢
| 17:15,16: | ⊢ ∃𝑢(𝑧 = 〈𝑥 , 𝑦〉 → ∃𝑣𝑧 = 〈
𝑢, 𝑣〉)
| 18:17: | ⊢ (𝑧 = 〈𝑥 , 𝑦〉 → ∃𝑢∃𝑣𝑧 = 〈
𝑢, 𝑣〉)
| 19:18: | ⊢ (∃𝑦𝑧 = 〈𝑥 , 𝑦〉 → ∃𝑦∃𝑢
∃𝑣𝑧 = 〈𝑢, 𝑣〉)
| 20:: | ⊢ (∃𝑦∃𝑢∃𝑣𝑧 = 〈𝑢 , 𝑣〉 →
∃𝑢∃𝑣𝑧 = 〈𝑢, 𝑣〉)
| 21:19,20: | ⊢ (∃𝑦𝑧 = 〈𝑥 , 𝑦〉 → ∃𝑢∃𝑣𝑧
= 〈𝑢, 𝑣〉)
| 22:21: | ⊢ (∃𝑥∃𝑦𝑧 = 〈𝑥 , 𝑦〉 → ∃𝑥
∃𝑢∃𝑣𝑧 = 〈𝑢, 𝑣〉)
| 23:: | ⊢ (∃𝑥∃𝑢∃𝑣𝑧 = 〈𝑢 , 𝑣〉 →
∃𝑢∃𝑣𝑧 = 〈𝑢, 𝑣〉)
| 24:22,23: | ⊢ (∃𝑥∃𝑦𝑧 = 〈𝑥 , 𝑦〉 → ∃𝑢
∃𝑣𝑧 = 〈𝑢, 𝑣〉)
| 25:24: | ⊢ {𝑧 ∣ ∃𝑥∃𝑦𝑧 = 〈𝑥 , 𝑦〉} ⊆
{𝑧 ∣ ∃𝑢∃𝑣𝑧 = 〈𝑢, 𝑣〉}
| 26:: | ⊢ 𝑥 ∈ V
| 27:: | ⊢ 𝑦 ∈ V
| 28:26,27: | ⊢ (𝑥 ∈ V ∧ 𝑦 ∈ V)
| 29:28: | ⊢ (𝑧 = 〈𝑥 , 𝑦〉 ↔ (𝑧 = 〈𝑥 , 𝑦
〉 ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)))
| 30:29: | ⊢ (∃𝑦𝑧 = 〈𝑥 , 𝑦〉 ↔ ∃𝑦(𝑧 =
〈𝑥, 𝑦〉 ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)))
| 31:30: | ⊢ (∃𝑥∃𝑦𝑧 = 〈𝑥 , 𝑦〉 ↔ ∃𝑥
∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)))
| 32:31: | ⊢ {𝑧 ∣ ∃𝑥∃𝑦𝑧 = 〈𝑥 , 𝑦〉} = {
𝑧 ∣ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V))}
| 320:25,32: | ⊢ {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = 〈𝑥 , 𝑦〉 ∧
(𝑥 ∈ V ∧ 𝑦 ∈ V))} ⊆ {𝑧 ∣ ∃𝑢∃𝑣𝑧 = 〈𝑢, 𝑣〉}
| 33:: | ⊢ 𝑢 ∈ V
| 34:: | ⊢ 𝑣 ∈ V
| 35:33,34: | ⊢ (𝑢 ∈ V ∧ 𝑣 ∈ V)
| 36:35: | ⊢ (𝑧 = 〈𝑢 , 𝑣〉 ↔ (𝑧 = 〈𝑢 , 𝑣
〉 ∧ (𝑢 ∈ V ∧ 𝑣 ∈ V)))
| 37:36: | ⊢ (∃𝑣𝑧 = 〈𝑢 , 𝑣〉 ↔ ∃𝑣(𝑧 =
〈𝑢, 𝑣〉 ∧ (𝑢 ∈ V ∧ 𝑣 ∈ V)))
| 38:37: | ⊢ (∃𝑢∃𝑣𝑧 = 〈𝑢 , 𝑣〉 ↔ ∃𝑢
∃𝑣(𝑧 = 〈𝑢, 𝑣〉 ∧ (𝑢 ∈ V ∧ 𝑣 ∈ V)))
| 39:38: | ⊢ {𝑧 ∣ ∃𝑢∃𝑣𝑧 = 〈𝑢 , 𝑣〉} = {
𝑧 ∣ ∃𝑢∃𝑣(𝑧 = 〈𝑢, 𝑣〉 ∧ (𝑢 ∈ V ∧ 𝑣 ∈ V))}
| 40:320,39: | ⊢ {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = 〈𝑥 , 𝑦〉 ∧
(𝑥 ∈ V ∧ 𝑦 ∈ V))} ⊆ {𝑧 ∣ ∃𝑢∃𝑣(𝑧 = 〈𝑢, 𝑣〉 ∧
(𝑢 ∈ V ∧ 𝑣 ∈ V))}
| 41:: | ⊢ {〈𝑥 , 𝑦〉 ∣ (𝑥 ∈ V ∧ 𝑦 ∈ V
)} = {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V))
}
| 42:: | ⊢ {〈𝑢 , 𝑣〉 ∣ (𝑢 ∈ V ∧ 𝑣 ∈ V
)} = {𝑧 ∣ ∃𝑢∃𝑣(𝑧 = 〈𝑢, 𝑣〉 ∧ (𝑢 ∈ V ∧ 𝑣 ∈ V))
}
| 43:40,41,42: | ⊢ {〈𝑥 , 𝑦〉 ∣ (𝑥 ∈ V ∧ 𝑦 ∈ V
)} ⊆ {〈𝑢, 𝑣〉 ∣ (𝑢 ∈ V ∧ 𝑣 ∈ V)}
| 44:: | ⊢ {〈𝑢 , 𝑣〉 ∣ (𝑢 ∈ V ∧ 𝑣 ∈ V
)} = (V × V)
| 45:43,44: | ⊢ {〈𝑥 , 𝑦〉 ∣ (𝑥 ∈ V ∧ 𝑦 ∈ V
)} ⊆ (V × V)
| 46:28: | ⊢ (𝜑 → (𝑥 ∈ V ∧ 𝑦 ∈ V))
| 47:46: | ⊢ {〈𝑥 , 𝑦〉 ∣ 𝜑} ⊆ {〈𝑥 , 𝑦〉
∣ (𝑥 ∈ V ∧ 𝑦 ∈ V)}
| 48:45,47: | ⊢ {〈𝑥 , 𝑦〉 ∣ 𝜑} ⊆ (V × V)
| qed:48: | ⊢ Rel {〈𝑥 , 𝑦〉 ∣ 𝜑}
|
(Contributed by Alan Sare, 9-Jul-2013.) (Proof modification is
discouraged.) (New usage is discouraged.)
|
⊢ Rel
{〈𝑥, 𝑦〉 ∣ 𝜑} |
|
Theorem | 19.41rgVD 44313 |
Virtual deduction proof of 19.41rg 43961.
The following User's Proof is a Virtual Deduction proof completed
automatically by the tools program completeusersproof.cmd, which invokes
Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. 19.41rg 43961
is 19.41rgVD 44313 without virtual deductions and was automatically derived
from 19.41rgVD 44313. (Contributed by Alan Sare, 8-Feb-2014.)
(Proof modification is discouraged.) (New usage is discouraged.)
1:: | ⊢ (𝜓 → (𝜑 → (𝜑 ∧ 𝜓)))
| 2:1: | ⊢ ((𝜓 → ∀𝑥𝜓) → (𝜓 → (𝜑 → (
𝜑 ∧ 𝜓))))
| 3:2: | ⊢ ∀𝑥((𝜓 → ∀𝑥𝜓) → (𝜓 → (𝜑
→ (𝜑 ∧ 𝜓))))
| 4:3: | ⊢ (∀𝑥(𝜓 → ∀𝑥𝜓) → (∀𝑥𝜓 →
∀𝑥(𝜑 → (𝜑 ∧ 𝜓))))
| 5:: | ⊢ ( ∀𝑥(𝜓 → ∀𝑥𝜓) ▶ ∀𝑥(𝜓
→ ∀𝑥𝜓) )
| 6:4,5: | ⊢ ( ∀𝑥(𝜓 → ∀𝑥𝜓) ▶ (∀𝑥𝜓
→ ∀𝑥(𝜑 → (𝜑 ∧ 𝜓))) )
| 7:: | ⊢ ( ∀𝑥(𝜓 → ∀𝑥𝜓) , ∀𝑥𝜓 ▶
∀𝑥𝜓 )
| 8:6,7: | ⊢ ( ∀𝑥(𝜓 → ∀𝑥𝜓) , ∀𝑥𝜓 ▶
∀𝑥(𝜑 → (𝜑 ∧ 𝜓)) )
| 9:8: | ⊢ ( ∀𝑥(𝜓 → ∀𝑥𝜓) , ∀𝑥𝜓 ▶
(∃𝑥𝜑 → ∃𝑥(𝜑 ∧ 𝜓)) )
| 10:9: | ⊢ ( ∀𝑥(𝜓 → ∀𝑥𝜓) ▶ (∀𝑥𝜓
→ (∃𝑥𝜑 → ∃𝑥(𝜑 ∧ 𝜓))) )
| 11:5: | ⊢ ( ∀𝑥(𝜓 → ∀𝑥𝜓) ▶ (𝜓 → ∀
𝑥𝜓) )
| 12:10,11: | ⊢ ( ∀𝑥(𝜓 → ∀𝑥𝜓) ▶ (𝜓 → (
∃𝑥𝜑 → ∃𝑥(𝜑 ∧ 𝜓))) )
| 13:12: | ⊢ ( ∀𝑥(𝜓 → ∀𝑥𝜓) ▶ (∃𝑥𝜑
→ (𝜓 → ∃𝑥(𝜑 ∧ 𝜓))) )
| 14:13: | ⊢ ( ∀𝑥(𝜓 → ∀𝑥𝜓) ▶ ((∃𝑥
𝜑 ∧ 𝜓) → ∃𝑥(𝜑 ∧ 𝜓)) )
| qed:14: | ⊢ (∀𝑥(𝜓 → ∀𝑥𝜓) → ((∃𝑥𝜑
∧ 𝜓) → ∃𝑥(𝜑 ∧ 𝜓)))
|
|
⊢ (∀𝑥(𝜓 → ∀𝑥𝜓) → ((∃𝑥𝜑 ∧ 𝜓) → ∃𝑥(𝜑 ∧ 𝜓))) |
|
Theorem | 2pm13.193VD 44314 |
Virtual deduction proof of 2pm13.193 43963.
The following User's Proof is a Virtual Deduction proof completed
automatically by the tools program completeusersproof.cmd, which invokes
Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant.
2pm13.193 43963 is 2pm13.193VD 44314 without virtual deductions and was
automatically derived from 2pm13.193VD 44314. (Contributed by Alan Sare,
8-Feb-2014.)
(Proof modification is discouraged.) (New usage is discouraged.)
1:: | ⊢ ( ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 / 𝑥][
𝑣 / 𝑦]𝜑) ▶ ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑) )
| 2:1: | ⊢ ( ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 / 𝑥][
𝑣 / 𝑦]𝜑) ▶ (𝑥 = 𝑢 ∧ 𝑦 = 𝑣) )
| 3:2: | ⊢ ( ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 / 𝑥][
𝑣 / 𝑦]𝜑) ▶ 𝑥 = 𝑢 )
| 4:1: | ⊢ ( ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 / 𝑥][
𝑣 / 𝑦]𝜑) ▶ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑 )
| 5:3,4: | ⊢ ( ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 / 𝑥][
𝑣 / 𝑦]𝜑) ▶ ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 ∧ 𝑥 = 𝑢) )
| 6:5: | ⊢ ( ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 / 𝑥][
𝑣 / 𝑦]𝜑) ▶ ([𝑣 / 𝑦]𝜑 ∧ 𝑥 = 𝑢) )
| 7:6: | ⊢ ( ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 / 𝑥][
𝑣 / 𝑦]𝜑) ▶ [𝑣 / 𝑦]𝜑 )
| 8:2: | ⊢ ( ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 / 𝑥][
𝑣 / 𝑦]𝜑) ▶ 𝑦 = 𝑣 )
| 9:7,8: | ⊢ ( ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 / 𝑥][
𝑣 / 𝑦]𝜑) ▶ ([𝑣 / 𝑦]𝜑 ∧ 𝑦 = 𝑣) )
| 10:9: | ⊢ ( ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 / 𝑥][
𝑣 / 𝑦]𝜑) ▶ (𝜑 ∧ 𝑦 = 𝑣) )
| 11:10: | ⊢ ( ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 / 𝑥][
𝑣 / 𝑦]𝜑) ▶ 𝜑 )
| 12:2,11: | ⊢ ( ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 / 𝑥][
𝑣 / 𝑦]𝜑) ▶ ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑) )
| 13:12: | ⊢ (((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣
/ 𝑦]𝜑) → ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑))
| 14:: | ⊢ ( ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑) ▶ ((
𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑) )
| 15:14: | ⊢ ( ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑) ▶ (𝑥
= 𝑢 ∧ 𝑦 = 𝑣) )
| 16:15: | ⊢ ( ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑) ▶ 𝑦 =
𝑣 )
| 17:14: | ⊢ ( ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑) ▶ 𝜑
)
| 18:16,17: | ⊢ ( ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑) ▶ (
𝜑 ∧ 𝑦 = 𝑣) )
| 19:18: | ⊢ ( ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑) ▶ ([
𝑣 / 𝑦]𝜑 ∧ 𝑦 = 𝑣) )
| 20:15: | ⊢ ( ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑) ▶ 𝑥 =
𝑢 )
| 21:19: | ⊢ ( ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑) ▶ [𝑣
/ 𝑦]𝜑 )
| 22:20,21: | ⊢ ( ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑) ▶ ([
𝑣 / 𝑦]𝜑 ∧ 𝑥 = 𝑢) )
| 23:22: | ⊢ ( ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑) ▶ ([
𝑢 / 𝑥][𝑣 / 𝑦]𝜑 ∧ 𝑥 = 𝑢) )
| 24:23: | ⊢ ( ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑) ▶ [𝑢
/ 𝑥][𝑣 / 𝑦]𝜑 )
| 25:15,24: | ⊢ ( ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑) ▶ ((
𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑) )
| 26:25: | ⊢ (((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑) → ((𝑥
= 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑))
| qed:13,26: | ⊢ (((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣
/ 𝑦]𝜑) ↔ ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑))
|
|
⊢ (((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑) ↔ ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑)) |
|
Theorem | hbimpgVD 44315 |
Virtual deduction proof of hbimpg 43965.
The following User's Proof is a Virtual Deduction proof completed
automatically by the tools program completeusersproof.cmd, which invokes
Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. hbimpg 43965
is hbimpgVD 44315 without virtual deductions and was automatically derived
from hbimpgVD 44315. (Contributed by Alan Sare, 8-Feb-2014.)
(Proof modification is discouraged.) (New usage is discouraged.)
1:: | ⊢ ( (∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓
→ ∀𝑥𝜓)) ▶ (∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓 →
∀𝑥𝜓)) )
| 2:1: | ⊢ ( (∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓
→ ∀𝑥𝜓)) ▶ ∀𝑥(𝜑 → ∀𝑥𝜑) )
| 3:: | ⊢ ( (∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓
→ ∀𝑥𝜓)), ¬ 𝜑 ▶ ¬ 𝜑 )
| 4:2: | ⊢ ( (∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓
→ ∀𝑥𝜓)) ▶ ∀𝑥(¬ 𝜑 → ∀𝑥¬ 𝜑) )
| 5:4: | ⊢ ( (∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓
→ ∀𝑥𝜓)) ▶ (¬ 𝜑 → ∀𝑥¬ 𝜑) )
| 6:3,5: | ⊢ ( (∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓
→ ∀𝑥𝜓)), ¬ 𝜑 ▶ ∀𝑥¬ 𝜑 )
| 7:: | ⊢ (¬ 𝜑 → (𝜑 → 𝜓))
| 8:7: | ⊢ (∀𝑥¬ 𝜑 → ∀𝑥(𝜑 → 𝜓))
| 9:6,8: | ⊢ ( (∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓
→ ∀𝑥𝜓)), ¬ 𝜑 ▶ ∀𝑥(𝜑 → 𝜓) )
| 10:9: | ⊢ ( (∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓
→ ∀𝑥𝜓)) ▶ (¬ 𝜑 → ∀𝑥(𝜑 → 𝜓)) )
| 11:: | ⊢ (𝜓 → (𝜑 → 𝜓))
| 12:11: | ⊢ (∀𝑥𝜓 → ∀𝑥(𝜑 → 𝜓))
| 13:1: | ⊢ ( (∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓
→ ∀𝑥𝜓)) ▶ ∀𝑥(𝜓 → ∀𝑥𝜓) )
| 14:13: | ⊢ ( (∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓
→ ∀𝑥𝜓)) ▶ (𝜓 → ∀𝑥𝜓) )
| 15:14,12: | ⊢ ( (∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓
→ ∀𝑥𝜓)) ▶ (𝜓 → ∀𝑥(𝜑 → 𝜓)) )
| 16:10,15: | ⊢ ( (∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓
→ ∀𝑥𝜓)) ▶ ((¬ 𝜑 ∨ 𝜓) → ∀𝑥(𝜑 → 𝜓)) )
| 17:: | ⊢ ((𝜑 → 𝜓) ↔ (¬ 𝜑 ∨ 𝜓))
| 18:16,17: | ⊢ ( (∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓
→ ∀𝑥𝜓)) ▶ ((𝜑 → 𝜓) → ∀𝑥(𝜑 → 𝜓)) )
| 19:: | ⊢ (∀𝑥(𝜑 → ∀𝑥𝜑) → ∀𝑥∀𝑥(
𝜑 → ∀𝑥𝜑))
| 20:: | ⊢ (∀𝑥(𝜓 → ∀𝑥𝜓) → ∀𝑥∀𝑥(
𝜓 → ∀𝑥𝜓))
| 21:19,20: | ⊢ ((∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓
→ ∀𝑥𝜓)) → ∀𝑥(∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓 →
∀𝑥𝜓)))
| 22:21,18: | ⊢ ( (∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓
→ ∀𝑥𝜓)) ▶ ∀𝑥((𝜑 → 𝜓) → ∀𝑥(𝜑 → 𝜓)) )
| qed:22: | ⊢ ((∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓
→ ∀𝑥𝜓)) → ∀𝑥((𝜑 → 𝜓) → ∀𝑥(𝜑 → 𝜓)))
|
|
⊢
((∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓 → ∀𝑥𝜓)) → ∀𝑥((𝜑 → 𝜓) → ∀𝑥(𝜑 → 𝜓))) |
|
Theorem | hbalgVD 44316 |
Virtual deduction proof of hbalg 43966.
The following User's Proof is a Virtual Deduction proof completed
automatically by the tools program completeusersproof.cmd, which invokes
Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. hbalg 43966
is hbalgVD 44316 without virtual deductions and was automatically derived
from hbalgVD 44316. (Contributed by Alan Sare, 8-Feb-2014.)
(Proof modification is discouraged.) (New usage is discouraged.)
1:: | ⊢ ( ∀𝑦(𝜑 → ∀𝑥𝜑) ▶ ∀𝑦(𝜑
→ ∀𝑥𝜑) )
| 2:1: | ⊢ ( ∀𝑦(𝜑 → ∀𝑥𝜑) ▶ (∀𝑦𝜑
→ ∀𝑦∀𝑥𝜑) )
| 3:: | ⊢ (∀𝑦∀𝑥𝜑 → ∀𝑥∀𝑦𝜑)
| 4:2,3: | ⊢ ( ∀𝑦(𝜑 → ∀𝑥𝜑) ▶ (∀𝑦𝜑
→ ∀𝑥∀𝑦𝜑) )
| 5:: | ⊢ (∀𝑦(𝜑 → ∀𝑥𝜑) → ∀𝑦∀𝑦(
𝜑 → ∀𝑥𝜑))
| 6:5,4: | ⊢ ( ∀𝑦(𝜑 → ∀𝑥𝜑) ▶ ∀𝑦(∀
𝑦𝜑 → ∀𝑥∀𝑦𝜑) )
| qed:6: | ⊢ (∀𝑦(𝜑 → ∀𝑥𝜑) → ∀𝑦(∀𝑦
𝜑 → ∀𝑥∀𝑦𝜑))
|
|
⊢ (∀𝑦(𝜑 → ∀𝑥𝜑) → ∀𝑦(∀𝑦𝜑 → ∀𝑥∀𝑦𝜑)) |
|
Theorem | hbexgVD 44317 |
Virtual deduction proof of hbexg 43967.
The following User's Proof is a Virtual Deduction proof completed
automatically by the tools program completeusersproof.cmd, which invokes
Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. hbexg 43967
is hbexgVD 44317 without virtual deductions and was automatically derived
from hbexgVD 44317. (Contributed by Alan Sare, 8-Feb-2014.)
(Proof modification is discouraged.) (New usage is discouraged.)
1:: | ⊢ ( ∀𝑥∀𝑦(𝜑 → ∀𝑥𝜑) ▶ ∀𝑥
∀𝑦(𝜑 → ∀𝑥𝜑) )
| 2:1: | ⊢ ( ∀𝑥∀𝑦(𝜑 → ∀𝑥𝜑) ▶ ∀𝑦
∀𝑥(𝜑 → ∀𝑥𝜑) )
| 3:2: | ⊢ ( ∀𝑥∀𝑦(𝜑 → ∀𝑥𝜑) ▶ ∀𝑥
(𝜑 → ∀𝑥𝜑) )
| 4:3: | ⊢ ( ∀𝑥∀𝑦(𝜑 → ∀𝑥𝜑) ▶ ∀𝑥
(¬ 𝜑 → ∀𝑥¬ 𝜑) )
| 5:: | ⊢ (∀𝑥∀𝑦(𝜑 → ∀𝑥𝜑) ↔ ∀𝑦
∀𝑥(𝜑 → ∀𝑥𝜑))
| 6:: | ⊢ (∀𝑦∀𝑥(𝜑 → ∀𝑥𝜑) → ∀𝑦
∀𝑦∀𝑥(𝜑 → ∀𝑥𝜑))
| 7:5: | ⊢ (∀𝑦∀𝑥∀𝑦(𝜑 → ∀𝑥𝜑) ↔
∀𝑦∀𝑦∀𝑥(𝜑 → ∀𝑥𝜑))
| 8:5,6,7: | ⊢ (∀𝑥∀𝑦(𝜑 → ∀𝑥𝜑) → ∀𝑦
∀𝑥∀𝑦(𝜑 → ∀𝑥𝜑))
| 9:8,4: | ⊢ ( ∀𝑥∀𝑦(𝜑 → ∀𝑥𝜑) ▶ ∀𝑦
∀𝑥(¬ 𝜑 → ∀𝑥¬ 𝜑) )
| 10:9: | ⊢ ( ∀𝑥∀𝑦(𝜑 → ∀𝑥𝜑) ▶ ∀𝑥
∀𝑦(¬ 𝜑 → ∀𝑥¬ 𝜑) )
| 11:10: | ⊢ ( ∀𝑥∀𝑦(𝜑 → ∀𝑥𝜑) ▶ ∀𝑦
(¬ 𝜑 → ∀𝑥¬ 𝜑) )
| 12:11: | ⊢ ( ∀𝑥∀𝑦(𝜑 → ∀𝑥𝜑) ▶ ∀𝑦
(∀𝑦¬ 𝜑 → ∀𝑥∀𝑦¬ 𝜑) )
| 13:12: | ⊢ ( ∀𝑥∀𝑦(𝜑 → ∀𝑥𝜑) ▶ (∀
𝑦¬ 𝜑 → ∀𝑥∀𝑦¬ 𝜑) )
| 14:: | ⊢ (∀𝑥∀𝑦(𝜑 → ∀𝑥𝜑) → ∀𝑥
∀𝑥∀𝑦(𝜑 → ∀𝑥𝜑))
| 15:13,14: | ⊢ ( ∀𝑥∀𝑦(𝜑 → ∀𝑥𝜑) ▶ ∀𝑥
(∀𝑦¬ 𝜑 → ∀𝑥∀𝑦¬ 𝜑) )
| 16:15: | ⊢ ( ∀𝑥∀𝑦(𝜑 → ∀𝑥𝜑) ▶ ∀𝑥
(¬ ∀𝑦¬ 𝜑 → ∀𝑥¬ ∀𝑦¬ 𝜑) )
| 17:16: | ⊢ ( ∀𝑥∀𝑦(𝜑 → ∀𝑥𝜑) ▶ (¬
∀𝑦¬ 𝜑 → ∀𝑥¬ ∀𝑦¬ 𝜑) )
| 18:: | ⊢ (∃𝑦𝜑 ↔ ¬ ∀𝑦¬ 𝜑)
| 19:17,18: | ⊢ ( ∀𝑥∀𝑦(𝜑 → ∀𝑥𝜑) ▶ (∃
𝑦𝜑 → ∀𝑥¬ ∀𝑦¬ 𝜑) )
| 20:18: | ⊢ (∀𝑥∃𝑦𝜑 ↔ ∀𝑥¬ ∀𝑦¬ 𝜑)
| 21:19,20: | ⊢ ( ∀𝑥∀𝑦(𝜑 → ∀𝑥𝜑) ▶ (∃
𝑦𝜑 → ∀𝑥∃𝑦𝜑) )
| 22:8,21: | ⊢ ( ∀𝑥∀𝑦(𝜑 → ∀𝑥𝜑) ▶ ∀𝑦
(∃𝑦𝜑 → ∀𝑥∃𝑦𝜑) )
| 23:14,22: | ⊢ ( ∀𝑥∀𝑦(𝜑 → ∀𝑥𝜑) ▶ ∀𝑥
∀𝑦(∃𝑦𝜑 → ∀𝑥∃𝑦𝜑) )
| qed:23: | ⊢ ( ∀𝑥∀𝑦(𝜑 → ∀𝑥𝜑) ▶ ∀𝑥
∀𝑦(∃𝑦𝜑 → ∀𝑥∃𝑦𝜑) )
|
|
⊢ (∀𝑥∀𝑦(𝜑 → ∀𝑥𝜑) → ∀𝑥∀𝑦(∃𝑦𝜑 → ∀𝑥∃𝑦𝜑)) |
|
Theorem | ax6e2eqVD 44318* |
The following User's Proof is a Virtual Deduction proof (see wvd1 43980)
completed automatically by a Metamath tools program invoking mmj2 and
the Metamath Proof Assistant. ax6e2eq 43968 is ax6e2eqVD 44318 without virtual
deductions and was automatically derived from ax6e2eqVD 44318.
(Contributed by Alan Sare, 25-Mar-2014.)
(Proof modification is discouraged.) (New usage is discouraged.)
1:: | ⊢ ( ∀𝑥𝑥 = 𝑦 ▶ ∀𝑥𝑥 = 𝑦 )
| 2:: | ⊢ ( ∀𝑥𝑥 = 𝑦 , 𝑥 = 𝑢 ▶ 𝑥 = 𝑢 )
| 3:1: | ⊢ ( ∀𝑥𝑥 = 𝑦 ▶ 𝑥 = 𝑦 )
| 4:2,3: | ⊢ ( ∀𝑥𝑥 = 𝑦 , 𝑥 = 𝑢 ▶ 𝑦 = 𝑢 )
| 5:2,4: | ⊢ ( ∀𝑥𝑥 = 𝑦 , 𝑥 = 𝑢 ▶ (𝑥 = 𝑢 ∧ 𝑦
= 𝑢) )
| 6:5: | ⊢ ( ∀𝑥𝑥 = 𝑦 ▶ (𝑥 = 𝑢 → (𝑥 = 𝑢 ∧
𝑦 = 𝑢)) )
| 7:6: | ⊢ (∀𝑥𝑥 = 𝑦 → (𝑥 = 𝑢 → (𝑥 = 𝑢 ∧ 𝑦
= 𝑢)))
| 8:7: | ⊢ (∀𝑥∀𝑥𝑥 = 𝑦 → ∀𝑥(𝑥 = 𝑢 → (
𝑥 = 𝑢 ∧ 𝑦 = 𝑢)))
| 9:: | ⊢ (∀𝑥𝑥 = 𝑦 ↔ ∀𝑥∀𝑥𝑥 = 𝑦)
| 10:8,9: | ⊢ (∀𝑥𝑥 = 𝑦 → ∀𝑥(𝑥 = 𝑢 → (𝑥 = 𝑢
∧ 𝑦 = 𝑢)))
| 11:1,10: | ⊢ ( ∀𝑥𝑥 = 𝑦 ▶ ∀𝑥(𝑥 = 𝑢 → (𝑥 =
𝑢 ∧ 𝑦 = 𝑢)) )
| 12:11: | ⊢ ( ∀𝑥𝑥 = 𝑦 ▶ (∃𝑥𝑥 = 𝑢 → ∃𝑥
(𝑥 = 𝑢 ∧ 𝑦 = 𝑢)) )
| 13:: | ⊢ ∃𝑥𝑥 = 𝑢
| 14:13,12: | ⊢ ( ∀𝑥𝑥 = 𝑦 ▶ ∃𝑥(𝑥 = 𝑢 ∧ 𝑦 = 𝑢
) )
| 140:14: | ⊢ (∀𝑥𝑥 = 𝑦 → ∃𝑥(𝑥 = 𝑢 ∧ 𝑦 = 𝑢)
)
| 141:140: | ⊢ (∀𝑥𝑥 = 𝑦 → ∀𝑥∃𝑥(𝑥 = 𝑢 ∧ 𝑦
= 𝑢))
| 15:1,141: | ⊢ ( ∀𝑥𝑥 = 𝑦 ▶ ∀𝑥∃𝑥(𝑥 = 𝑢 ∧
𝑦 = 𝑢) )
| 16:1,15: | ⊢ ( ∀𝑥𝑥 = 𝑦 ▶ ∀𝑦∃𝑥(𝑥 = 𝑢 ∧
𝑦 = 𝑢) )
| 17:16: | ⊢ ( ∀𝑥𝑥 = 𝑦 ▶ ∃𝑦∃𝑥(𝑥 = 𝑢 ∧
𝑦 = 𝑢) )
| 18:17: | ⊢ ( ∀𝑥𝑥 = 𝑦 ▶ ∃𝑥∃𝑦(𝑥 = 𝑢 ∧
𝑦 = 𝑢) )
| 19:: | ⊢ ( 𝑢 = 𝑣 ▶ 𝑢 = 𝑣 )
| 20:: | ⊢ ( 𝑢 = 𝑣 , (𝑥 = 𝑢 ∧ 𝑦 = 𝑢) ▶ (𝑥 =
𝑢 ∧ 𝑦 = 𝑢) )
| 21:20: | ⊢ ( 𝑢 = 𝑣 , (𝑥 = 𝑢 ∧ 𝑦 = 𝑢) ▶ 𝑦 = 𝑢
)
| 22:19,21: | ⊢ ( 𝑢 = 𝑣 , (𝑥 = 𝑢 ∧ 𝑦 = 𝑢) ▶ 𝑦 = 𝑣
)
| 23:20: | ⊢ ( 𝑢 = 𝑣 , (𝑥 = 𝑢 ∧ 𝑦 = 𝑢) ▶ 𝑥 = 𝑢
)
| 24:22,23: | ⊢ ( 𝑢 = 𝑣 , (𝑥 = 𝑢 ∧ 𝑦 = 𝑢) ▶ (𝑥 =
𝑢 ∧ 𝑦 = 𝑣) )
| 25:24: | ⊢ ( 𝑢 = 𝑣 ▶ ((𝑥 = 𝑢 ∧ 𝑦 = 𝑢) → (
𝑥 = 𝑢 ∧ 𝑦 = 𝑣)) )
| 26:25: | ⊢ ( 𝑢 = 𝑣 ▶ ∀𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑢)
→ (𝑥 = 𝑢 ∧ 𝑦 = 𝑣)) )
| 27:26: | ⊢ ( 𝑢 = 𝑣 ▶ (∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑢)
→ ∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣)) )
| 28:27: | ⊢ ( 𝑢 = 𝑣 ▶ ∀𝑥(∃𝑦(𝑥 = 𝑢 ∧ 𝑦 =
𝑢) → ∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣)) )
| 29:28: | ⊢ ( 𝑢 = 𝑣 ▶ (∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 =
𝑢) → ∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣)) )
| 30:29: | ⊢ (𝑢 = 𝑣 → (∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑢
) → ∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣)))
| 31:18,30: | ⊢ ( ∀𝑥𝑥 = 𝑦 ▶ (𝑢 = 𝑣 → ∃𝑥∃𝑦
(𝑥 = 𝑢 ∧ 𝑦 = 𝑣)) )
| qed:31: | ⊢ (∀𝑥𝑥 = 𝑦 → (𝑢 = 𝑣 → ∃𝑥∃𝑦(
𝑥 = 𝑢 ∧ 𝑦 = 𝑣)))
|
|
⊢ (∀𝑥 𝑥 = 𝑦 → (𝑢 = 𝑣 → ∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣))) |
|
Theorem | ax6e2ndVD 44319* |
The following User's Proof is a Virtual Deduction proof (see wvd1 43980)
completed automatically by a Metamath tools program invoking mmj2 and
the Metamath Proof Assistant. ax6e2nd 43969 is ax6e2ndVD 44319 without virtual
deductions and was automatically derived from ax6e2ndVD 44319.
(Contributed by Alan Sare, 25-Mar-2014.)
(Proof modification is discouraged.) (New usage is discouraged.)
1:: | ⊢ ∃𝑦𝑦 = 𝑣
| 2:: | ⊢ 𝑢 ∈ V
| 3:1,2: | ⊢ (𝑢 ∈ V ∧ ∃𝑦𝑦 = 𝑣)
| 4:3: | ⊢ ∃𝑦(𝑢 ∈ V ∧ 𝑦 = 𝑣)
| 5:: | ⊢ (𝑢 ∈ V ↔ ∃𝑥𝑥 = 𝑢)
| 6:5: | ⊢ ((𝑢 ∈ V ∧ 𝑦 = 𝑣) ↔ (∃𝑥𝑥 =
𝑢 ∧ 𝑦 = 𝑣))
| 7:6: | ⊢ (∃𝑦(𝑢 ∈ V ∧ 𝑦 = 𝑣) ↔ ∃𝑦
(∃𝑥𝑥 = 𝑢 ∧ 𝑦 = 𝑣))
| 8:4,7: | ⊢ ∃𝑦(∃𝑥𝑥 = 𝑢 ∧ 𝑦 = 𝑣)
| 9:: | ⊢ (𝑧 = 𝑣 → ∀𝑥𝑧 = 𝑣)
| 10:: | ⊢ (𝑦 = 𝑣 → ∀𝑧𝑦 = 𝑣)
| 11:: | ⊢ ( 𝑧 = 𝑦 ▶ 𝑧 = 𝑦 )
| 12:11: | ⊢ ( 𝑧 = 𝑦 ▶ (𝑧 = 𝑣 ↔ 𝑦 = 𝑣) )
| 120:11: | ⊢ (𝑧 = 𝑦 → (𝑧 = 𝑣 ↔ 𝑦 = 𝑣))
| 13:9,10,120: | ⊢ (¬ ∀𝑥𝑥 = 𝑦 → (𝑦 = 𝑣 → ∀𝑥𝑦
= 𝑣))
| 14:: | ⊢ ( ¬ ∀𝑥𝑥 = 𝑦 ▶ ¬ ∀𝑥𝑥 = 𝑦 )
| 15:14,13: | ⊢ ( ¬ ∀𝑥𝑥 = 𝑦 ▶ (𝑦 = 𝑣 → ∀𝑥
𝑦 = 𝑣) )
| 16:15: | ⊢ (¬ ∀𝑥𝑥 = 𝑦 → (𝑦 = 𝑣 → ∀𝑥𝑦
= 𝑣))
| 17:16: | ⊢ (∀𝑥¬ ∀𝑥𝑥 = 𝑦 → ∀𝑥(𝑦 = 𝑣
→ ∀𝑥𝑦 = 𝑣))
| 18:: | ⊢ (¬ ∀𝑥𝑥 = 𝑦 → ∀𝑥¬ ∀𝑥𝑥 = 𝑦
)
| 19:17,18: | ⊢ (¬ ∀𝑥𝑥 = 𝑦 → ∀𝑥(𝑦 = 𝑣 → ∀
𝑥𝑦 = 𝑣))
| 20:14,19: | ⊢ ( ¬ ∀𝑥𝑥 = 𝑦 ▶ ∀𝑥(𝑦 = 𝑣 →
∀𝑥𝑦 = 𝑣) )
| 21:20: | ⊢ ( ¬ ∀𝑥𝑥 = 𝑦 ▶ ((∃𝑥𝑥 = 𝑢
∧ 𝑦 = 𝑣) → ∃𝑥(𝑥 = 𝑢 ∧ 𝑦 = 𝑣)) )
| 22:21: | ⊢ (¬ ∀𝑥𝑥 = 𝑦 → ((∃𝑥𝑥 = 𝑢 ∧
𝑦 = 𝑣) → ∃𝑥(𝑥 = 𝑢 ∧ 𝑦 = 𝑣)))
| 23:22: | ⊢ (∀𝑦¬ ∀𝑥𝑥 = 𝑦 → ∀𝑦((∃𝑥
𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → ∃𝑥(𝑥 = 𝑢 ∧ 𝑦 = 𝑣)))
| 24:: | ⊢ (¬ ∀𝑥𝑥 = 𝑦 → ∀𝑦¬ ∀𝑥𝑥 = 𝑦
)
| 25:23,24: | ⊢ (¬ ∀𝑥𝑥 = 𝑦 → ∀𝑦((∃𝑥𝑥 =
𝑢 ∧ 𝑦 = 𝑣) → ∃𝑥(𝑥 = 𝑢 ∧ 𝑦 = 𝑣)))
| 26:14,25: | ⊢ ( ¬ ∀𝑥𝑥 = 𝑦 ▶ ∀𝑦((∃𝑥𝑥
= 𝑢 ∧ 𝑦 = 𝑣) → ∃𝑥(𝑥 = 𝑢 ∧ 𝑦 = 𝑣)) )
| 27:26: | ⊢ ( ¬ ∀𝑥𝑥 = 𝑦 ▶ (∃𝑦(∃𝑥𝑥
= 𝑢 ∧ 𝑦 = 𝑣) → ∃𝑦∃𝑥(𝑥 = 𝑢 ∧ 𝑦 = 𝑣)) )
| 28:8,27: | ⊢ ( ¬ ∀𝑥𝑥 = 𝑦 ▶ ∃𝑦∃𝑥(𝑥 =
𝑢 ∧ 𝑦 = 𝑣) )
| 29:28: | ⊢ ( ¬ ∀𝑥𝑥 = 𝑦 ▶ ∃𝑥∃𝑦(𝑥 =
𝑢 ∧ 𝑦 = 𝑣) )
| qed:29: | ⊢ (¬ ∀𝑥𝑥 = 𝑦 → ∃𝑥∃𝑦(𝑥 = 𝑢
∧ 𝑦 = 𝑣))
|
|
⊢ (¬
∀𝑥 𝑥 = 𝑦 → ∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣)) |
|
Theorem | ax6e2ndeqVD 44320* |
The following User's Proof is a Virtual Deduction proof (see wvd1 43980)
completed automatically by a Metamath tools program invoking mmj2 and
the Metamath Proof Assistant. ax6e2eq 43968 is ax6e2ndeqVD 44320 without virtual
deductions and was automatically derived from ax6e2ndeqVD 44320.
(Contributed by Alan Sare, 25-Mar-2014.)
(Proof modification is discouraged.) (New usage is discouraged.)
1:: | ⊢ ( 𝑢 ≠ 𝑣 ▶ 𝑢 ≠ 𝑣 )
| 2:: | ⊢ ( 𝑢 ≠ 𝑣 , (𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ▶ (
𝑥 = 𝑢 ∧ 𝑦 = 𝑣) )
| 3:2: | ⊢ ( 𝑢 ≠ 𝑣 , (𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ▶ 𝑥
= 𝑢 )
| 4:1,3: | ⊢ ( 𝑢 ≠ 𝑣 , (𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ▶ 𝑥
≠ 𝑣 )
| 5:2: | ⊢ ( 𝑢 ≠ 𝑣 , (𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ▶ 𝑦
= 𝑣 )
| 6:4,5: | ⊢ ( 𝑢 ≠ 𝑣 , (𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ▶ 𝑥
≠ 𝑦 )
| 7:: | ⊢ (∀𝑥𝑥 = 𝑦 → 𝑥 = 𝑦)
| 8:7: | ⊢ (¬ 𝑥 = 𝑦 → ¬ ∀𝑥𝑥 = 𝑦)
| 9:: | ⊢ (¬ 𝑥 = 𝑦 ↔ 𝑥 ≠ 𝑦)
| 10:8,9: | ⊢ (𝑥 ≠ 𝑦 → ¬ ∀𝑥𝑥 = 𝑦)
| 11:6,10: | ⊢ ( 𝑢 ≠ 𝑣 , (𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ▶
¬ ∀𝑥𝑥 = 𝑦 )
| 12:11: | ⊢ ( 𝑢 ≠ 𝑣 ▶ ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣)
→ ¬ ∀𝑥𝑥 = 𝑦) )
| 13:12: | ⊢ ( 𝑢 ≠ 𝑣 ▶ ∀𝑥((𝑥 = 𝑢 ∧ 𝑦 =
𝑣) → ¬ ∀𝑥𝑥 = 𝑦) )
| 14:13: | ⊢ ( 𝑢 ≠ 𝑣 ▶ (∃𝑥(𝑥 = 𝑢 ∧ 𝑦 =
𝑣) → ∃𝑥¬ ∀𝑥𝑥 = 𝑦) )
| 15:: | ⊢ (¬ ∀𝑥𝑥 = 𝑦 → ∀𝑥¬ ∀𝑥𝑥 = 𝑦
)
| 19:15: | ⊢ (∃𝑥¬ ∀𝑥𝑥 = 𝑦 ↔ ¬ ∀𝑥𝑥 =
𝑦)
| 20:14,19: | ⊢ ( 𝑢 ≠ 𝑣 ▶ (∃𝑥(𝑥 = 𝑢 ∧ 𝑦 =
𝑣) → ¬ ∀𝑥𝑥 = 𝑦) )
| 21:20: | ⊢ ( 𝑢 ≠ 𝑣 ▶ ∀𝑦(∃𝑥(𝑥 = 𝑢 ∧
𝑦 = 𝑣) → ¬ ∀𝑥𝑥 = 𝑦) )
| 22:21: | ⊢ ( 𝑢 ≠ 𝑣 ▶ (∃𝑦∃𝑥(𝑥 = 𝑢 ∧
𝑦 = 𝑣) → ∃𝑦¬ ∀𝑥𝑥 = 𝑦) )
| 23:: | ⊢ (∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ↔ ∃
𝑦∃𝑥(𝑥 = 𝑢 ∧ 𝑦 = 𝑣))
| 24:22,23: | ⊢ ( 𝑢 ≠ 𝑣 ▶ (∃𝑥∃𝑦(𝑥 = 𝑢 ∧
𝑦 = 𝑣) → ∃𝑦¬ ∀𝑥𝑥 = 𝑦) )
| 25:: | ⊢ (¬ ∀𝑥𝑥 = 𝑦 → ∀𝑦¬ ∀𝑥𝑥 = 𝑦
)
| 26:25: | ⊢ (∃𝑦¬ ∀𝑥𝑥 = 𝑦 → ∃𝑦∀𝑦¬
∀𝑥𝑥 = 𝑦)
| 260:: | ⊢ (∀𝑦¬ ∀𝑥𝑥 = 𝑦 → ∀𝑦∀𝑦¬
∀𝑥𝑥 = 𝑦)
| 27:260: | ⊢ (∃𝑦∀𝑦¬ ∀𝑥𝑥 = 𝑦 ↔ ∀𝑦¬
∀𝑥𝑥 = 𝑦)
| 270:26,27: | ⊢ (∃𝑦¬ ∀𝑥𝑥 = 𝑦 → ∀𝑦¬ ∀𝑥
𝑥 = 𝑦)
| 28:: | ⊢ (∀𝑦¬ ∀𝑥𝑥 = 𝑦 → ¬ ∀𝑥𝑥 = 𝑦
)
| 29:270,28: | ⊢ (∃𝑦¬ ∀𝑥𝑥 = 𝑦 → ¬ ∀𝑥𝑥 = 𝑦
)
| 30:24,29: | ⊢ ( 𝑢 ≠ 𝑣 ▶ (∃𝑥∃𝑦(𝑥 = 𝑢 ∧
𝑦 = 𝑣) → ¬ ∀𝑥𝑥 = 𝑦) )
| 31:30: | ⊢ ( 𝑢 ≠ 𝑣 ▶ (∃𝑥∃𝑦(𝑥 = 𝑢 ∧
𝑦 = 𝑣) → (¬ ∀𝑥𝑥 = 𝑦 ∨ 𝑢 = 𝑣)) )
| 32:31: | ⊢ (𝑢 ≠ 𝑣 → (∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦
= 𝑣) → (¬ ∀𝑥𝑥 = 𝑦 ∨ 𝑢 = 𝑣)))
| 33:: | ⊢ ( 𝑢 = 𝑣 ▶ 𝑢 = 𝑣 )
| 34:33: | ⊢ ( 𝑢 = 𝑣 ▶ (∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦
= 𝑣) → 𝑢 = 𝑣) )
| 35:34: | ⊢ ( 𝑢 = 𝑣 ▶ (∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦
= 𝑣) → (¬ ∀𝑥𝑥 = 𝑦 ∨ 𝑢 = 𝑣)) )
| 36:35: | ⊢ (𝑢 = 𝑣 → (∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 =
𝑣) → (¬ ∀𝑥𝑥 = 𝑦 ∨ 𝑢 = 𝑣)))
| 37:: | ⊢ (𝑢 = 𝑣 ∨ 𝑢 ≠ 𝑣)
| 38:32,36,37: | ⊢ (∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → (
¬ ∀𝑥𝑥 = 𝑦 ∨ 𝑢 = 𝑣))
| 39:: | ⊢ (∀𝑥𝑥 = 𝑦 → (𝑢 = 𝑣 → ∃𝑥∃𝑦
(𝑥 = 𝑢 ∧ 𝑦 = 𝑣)))
| 40:: | ⊢ (¬ ∀𝑥𝑥 = 𝑦 → ∃𝑥∃𝑦(𝑥 = 𝑢
∧ 𝑦 = 𝑣))
| 41:40: | ⊢ (¬ ∀𝑥𝑥 = 𝑦 → (𝑢 = 𝑣 → ∃𝑥∃
𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣)))
| 42:: | ⊢ (∀𝑥𝑥 = 𝑦 ∨ ¬ ∀𝑥𝑥 = 𝑦)
| 43:39,41,42: | ⊢ (𝑢 = 𝑣 → ∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣
))
| 44:40,43: | ⊢ ((¬ ∀𝑥𝑥 = 𝑦 ∨ 𝑢 = 𝑣) → ∃𝑥
∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣))
| qed:38,44: | ⊢ ((¬ ∀𝑥𝑥 = 𝑦 ∨ 𝑢 = 𝑣) ↔ ∃𝑥
∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣))
|
|
⊢ ((¬
∀𝑥 𝑥 = 𝑦 ∨ 𝑢 = 𝑣) ↔ ∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣)) |
|
Theorem | 2sb5ndVD 44321* |
The following User's Proof is a Virtual Deduction proof (see wvd1 43980)
completed automatically by a Metamath tools program invoking mmj2 and
the Metamath Proof Assistant. 2sb5nd 43971 is 2sb5ndVD 44321 without virtual
deductions and was automatically derived from 2sb5ndVD 44321.
(Contributed by Alan Sare, 30-Apr-2014.)
(Proof modification is discouraged.) (New usage is discouraged.)
1:: | ⊢ (((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 / 𝑥][
𝑣 / 𝑦]𝜑) ↔ ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑))
| 2:1: | ⊢ (∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 /
𝑥][𝑣 / 𝑦]𝜑) ↔ ∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑))
| 3:: | ⊢ ([𝑣 / 𝑦]𝜑 → ∀𝑦[𝑣 / 𝑦]𝜑)
| 4:3: | ⊢ [𝑢 / 𝑥]([𝑣 / 𝑦]𝜑 → ∀𝑦[𝑣
/ 𝑦]𝜑)
| 5:4: | ⊢ ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 → [𝑢 / 𝑥]
∀𝑦[𝑣 / 𝑦]𝜑)
| 6:: | ⊢ ( ¬ ∀𝑥𝑥 = 𝑦 ▶ ¬ ∀𝑥𝑥 = 𝑦 )
| 7:: | ⊢ (∀𝑦𝑦 = 𝑥 → ∀𝑥𝑥 = 𝑦)
| 8:7: | ⊢ (¬ ∀𝑥𝑥 = 𝑦 → ¬ ∀𝑦𝑦 = 𝑥)
| 9:6,8: | ⊢ ( ¬ ∀𝑥𝑥 = 𝑦 ▶ ¬ ∀𝑦𝑦 = 𝑥 )
| 10:9: | ⊢ ([𝑢 / 𝑥]∀𝑦[𝑣 / 𝑦]𝜑 ↔ ∀
𝑦[𝑢 / 𝑥][𝑣 / 𝑦]𝜑)
| 11:5,10: | ⊢ ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 → ∀𝑦[𝑢
/ 𝑥][𝑣 / 𝑦]𝜑)
| 12:11: | ⊢ (¬ ∀𝑥𝑥 = 𝑦 → ([𝑢 / 𝑥][𝑣 /
𝑦]𝜑 → ∀𝑦[𝑢 / 𝑥][𝑣 / 𝑦]𝜑))
| 13:: | ⊢ ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 → ∀𝑥[𝑢
/ 𝑥][𝑣 / 𝑦]𝜑)
| 14:: | ⊢ ( ∀𝑥𝑥 = 𝑦 ▶ ∀𝑥𝑥 = 𝑦 )
| 15:14: | ⊢ ( ∀𝑥𝑥 = 𝑦 ▶ (∀𝑥[𝑢 / 𝑥][
𝑣 / 𝑦]𝜑 → ∀𝑦[𝑢 / 𝑥][𝑣 / 𝑦]𝜑) )
| 16:13,15: | ⊢ ( ∀𝑥𝑥 = 𝑦 ▶ ([𝑢 / 𝑥][𝑣 / 𝑦
]𝜑 → ∀𝑦[𝑢 / 𝑥][𝑣 / 𝑦]𝜑) )
| 17:16: | ⊢ (∀𝑥𝑥 = 𝑦 → ([𝑢 / 𝑥][𝑣 / 𝑦]
𝜑 → ∀𝑦[𝑢 / 𝑥][𝑣 / 𝑦]𝜑))
| 19:12,17: | ⊢ ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 → ∀𝑦[𝑢
/ 𝑥][𝑣 / 𝑦]𝜑)
| 20:19: | ⊢ (∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 /
𝑥][𝑣 / 𝑦]𝜑) ↔ (∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧
[𝑢 / 𝑥][𝑣 / 𝑦]𝜑))
| 21:2,20: | ⊢ (∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑)
↔ (∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑))
| 22:21: | ⊢ (∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧
𝜑) ↔ ∃𝑥(∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧
[𝑢 / 𝑥][𝑣 / 𝑦]𝜑))
| 23:13: | ⊢ (∃𝑥(∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [
𝑢 / 𝑥][𝑣 / 𝑦]𝜑) ↔ (∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧
[𝑢 / 𝑥][𝑣 / 𝑦]𝜑))
| 24:22,23: | ⊢ ((∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [
𝑢 / 𝑥][𝑣 / 𝑦]𝜑) ↔ ∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑))
| 240:24: | ⊢ ((∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ (
∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑)) ↔
(∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ ∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧
𝜑)))
| 241:: | ⊢ ((∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ (
∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑)) ↔
(∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑))
| 242:241,240: | ⊢ ((∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [
𝑢 / 𝑥][𝑣 / 𝑦]𝜑) ↔ (∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧
∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑)))
| 243:: | ⊢ ((∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → (
[𝑢 / 𝑥][𝑣 / 𝑦]𝜑 ↔ ∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧
𝜑))) ↔ ((∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧
[𝑢 / 𝑥][𝑣 / 𝑦]𝜑) ↔ (∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧
∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑))))
| 25:242,243: | ⊢ (∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → ([
𝑢 / 𝑥][𝑣 / 𝑦]𝜑 ↔ ∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑)))
| 26:: | ⊢ ((¬ ∀𝑥𝑥 = 𝑦 ∨ 𝑢 = 𝑣) ↔ ∃𝑥
∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣))
| qed:25,26: | ⊢ ((¬ ∀𝑥𝑥 = 𝑦 ∨ 𝑢 = 𝑣) → ([𝑢
/ 𝑥][𝑣 / 𝑦]𝜑 ↔ ∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑)))
|
|
⊢ ((¬
∀𝑥 𝑥 = 𝑦 ∨ 𝑢 = 𝑣) → ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 ↔ ∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑))) |
|
Theorem | 2uasbanhVD 44322* |
The following User's Proof is a Virtual Deduction proof (see wvd1 43980)
completed automatically by a Metamath tools program invoking mmj2 and
the Metamath Proof Assistant. 2uasbanh 43972 is 2uasbanhVD 44322 without
virtual deductions and was automatically derived from 2uasbanhVD 44322.
(Contributed by Alan Sare, 31-May-2014.)
(Proof modification is discouraged.) (New usage is discouraged.)
h1:: | ⊢ (𝜒 ↔ (∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 =
𝑣) ∧ 𝜑) ∧ ∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜓)))
| 100:1: | ⊢ (𝜒 → (∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 =
𝑣) ∧ 𝜑) ∧ ∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜓)))
| 2:100: | ⊢ ( 𝜒 ▶ (∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦
= 𝑣) ∧ 𝜑) ∧ ∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜓)) )
| 3:2: | ⊢ ( 𝜒 ▶ ∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 =
𝑣) ∧ 𝜑) )
| 4:3: | ⊢ ( 𝜒 ▶ ∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣
) )
| 5:4: | ⊢ ( 𝜒 ▶ (¬ ∀𝑥𝑥 = 𝑦 ∨ 𝑢 = 𝑣)
)
| 6:5: | ⊢ ( 𝜒 ▶ ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑
↔ ∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑)) )
| 7:3,6: | ⊢ ( 𝜒 ▶ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑 )
| 8:2: | ⊢ ( 𝜒 ▶ ∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 =
𝑣) ∧ 𝜓) )
| 9:5: | ⊢ ( 𝜒 ▶ ([𝑢 / 𝑥][𝑣 / 𝑦]𝜓
↔ ∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜓)) )
| 10:8,9: | ⊢ ( 𝜒 ▶ [𝑢 / 𝑥][𝑣 / 𝑦]𝜓 )
| 101:: | ⊢ ([𝑣 / 𝑦](𝜑 ∧ 𝜓) ↔ ([𝑣 /
𝑦]𝜑 ∧ [𝑣 / 𝑦]𝜓))
| 102:101: | ⊢ ([𝑢 / 𝑥][𝑣 / 𝑦](𝜑 ∧ 𝜓)
↔ [𝑢 / 𝑥]([𝑣 / 𝑦]𝜑 ∧ [𝑣 / 𝑦]𝜓))
| 103:: | ⊢ ([𝑢 / 𝑥]([𝑣 / 𝑦]𝜑 ∧ [𝑣 / 𝑦
]𝜓) ↔ ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜓))
| 104:102,103: | ⊢ ([𝑢 / 𝑥][𝑣 / 𝑦](𝜑 ∧ 𝜓)
↔ ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜓))
| 11:7,10,104: | ⊢ ( 𝜒 ▶ [𝑢 / 𝑥][𝑣 / 𝑦](𝜑 ∧
𝜓) )
| 110:5: | ⊢ ( 𝜒 ▶ ([𝑢 / 𝑥][𝑣 / 𝑦](𝜑
∧ 𝜓) ↔ ∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ (𝜑 ∧ 𝜓))) )
| 12:11,110: | ⊢ ( 𝜒 ▶ ∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 =
𝑣) ∧ (𝜑 ∧ 𝜓)) )
| 120:12: | ⊢ (𝜒 → ∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣
) ∧ (𝜑 ∧ 𝜓)))
| 13:1,120: | ⊢ ((∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧
𝜑) ∧ ∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜓)) →
∃𝑥∃𝑦((𝑥 = 𝑢
∧ 𝑦 = 𝑣) ∧ (𝜑 ∧ 𝜓)))
| 14:: | ⊢ ( ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ (𝜑 ∧ 𝜓
)) ▶ ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ (𝜑 ∧ 𝜓)) )
| 15:14: | ⊢ ( ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ (𝜑 ∧ 𝜓
)) ▶ (𝑥 = 𝑢 ∧ 𝑦 = 𝑣) )
| 16:14: | ⊢ ( ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ (𝜑 ∧ 𝜓
)) ▶ (𝜑 ∧ 𝜓) )
| 17:16: | ⊢ ( ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ (𝜑 ∧ 𝜓
)) ▶ 𝜑 )
| 18:15,17: | ⊢ ( ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ (𝜑 ∧ 𝜓
)) ▶ ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑) )
| 19:18: | ⊢ (((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ (𝜑 ∧ 𝜓
)) → ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑))
| 20:19: | ⊢ (∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ (𝜑
∧ 𝜓)) → ∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑))
| 21:20: | ⊢ (∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ (
𝜑 ∧ 𝜓)) → ∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑))
| 22:16: | ⊢ ( ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ (𝜑 ∧ 𝜓
)) ▶ 𝜓 )
| 23:15,22: | ⊢ ( ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ (𝜑 ∧ 𝜓
)) ▶ ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜓) )
| 24:23: | ⊢ (((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ (𝜑 ∧ 𝜓
)) → ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜓))
| 25:24: | ⊢ (∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ (𝜑
∧ 𝜓)) → ∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜓))
| 26:25: | ⊢ (∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ (
𝜑 ∧ 𝜓)) → ∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜓))
| 27:21,26: | ⊢ (∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ (
𝜑 ∧ 𝜓)) → (∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑) ∧
∃𝑥∃𝑦(
(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜓)))
| qed:13,27: | ⊢ (∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ (
𝜑 ∧ 𝜓)) ↔ (∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑) ∧
∃𝑥∃𝑦(
(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜓)))
|
|
⊢ (𝜒 ↔ (∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑) ∧ ∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜓))) ⇒ ⊢ (∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ (𝜑 ∧ 𝜓)) ↔ (∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑) ∧ ∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜓))) |
|
Theorem | e2ebindVD 44323 |
The following User's Proof is a Virtual Deduction proof (see wvd1 43980)
completed automatically by a Metamath tools program invoking mmj2 and the
Metamath Proof Assistant. e2ebind 43974 is e2ebindVD 44323 without virtual
deductions and was automatically derived from e2ebindVD 44323.
1:: | ⊢ (𝜑 ↔ 𝜑)
| 2:1: | ⊢ (∀𝑦𝑦 = 𝑥 → (𝜑 ↔ 𝜑))
| 3:2: | ⊢ (∀𝑦𝑦 = 𝑥 → (∃𝑦𝜑 ↔ ∃𝑥𝜑
))
| 4:: | ⊢ ( ∀𝑦𝑦 = 𝑥 ▶ ∀𝑦𝑦 = 𝑥 )
| 5:3,4: | ⊢ ( ∀𝑦𝑦 = 𝑥 ▶ (∃𝑦𝜑 ↔ ∃𝑥
𝜑) )
| 6:: | ⊢ (∀𝑦𝑦 = 𝑥 → ∀𝑦∀𝑦𝑦 = 𝑥)
| 7:5,6: | ⊢ ( ∀𝑦𝑦 = 𝑥 ▶ ∀𝑦(∃𝑦𝜑 ↔
∃𝑥𝜑) )
| 8:7: | ⊢ ( ∀𝑦𝑦 = 𝑥 ▶ (∃𝑦∃𝑦𝜑 ↔
∃𝑦∃𝑥𝜑) )
| 9:: | ⊢ (∃𝑦∃𝑥𝜑 ↔ ∃𝑥∃𝑦𝜑)
| 10:8,9: | ⊢ ( ∀𝑦𝑦 = 𝑥 ▶ (∃𝑦∃𝑦𝜑 ↔
∃𝑥∃𝑦𝜑) )
| 11:: | ⊢ (∃𝑦𝜑 → ∀𝑦∃𝑦𝜑)
| 12:11: | ⊢ (∃𝑦∃𝑦𝜑 ↔ ∃𝑦𝜑)
| 13:10,12: | ⊢ ( ∀𝑦𝑦 = 𝑥 ▶ (∃𝑥∃𝑦𝜑 ↔
∃𝑦𝜑) )
| 14:13: | ⊢ (∀𝑦𝑦 = 𝑥 → (∃𝑥∃𝑦𝜑 ↔ ∃
𝑦𝜑))
| 15:: | ⊢ (∀𝑦𝑦 = 𝑥 ↔ ∀𝑥𝑥 = 𝑦)
| qed:14,15: | ⊢ (∀𝑥𝑥 = 𝑦 → (∃𝑥∃𝑦𝜑 ↔ ∃
𝑦𝜑))
|
(Contributed by Alan Sare, 27-Nov-2014.) (Proof modification is
discouraged.) (New usage is discouraged.)
|
⊢ (∀𝑥 𝑥 = 𝑦 → (∃𝑥∃𝑦𝜑 ↔ ∃𝑦𝜑)) |
|
21.39.8 Virtual Deduction transcriptions of
textbook proofs
|
|
Theorem | sb5ALTVD 44324* |
The following User's Proof is a Natural Deduction Sequent Calculus
transcription of the Fitch-style Natural Deduction proof of Unit 20
Excercise 3.a., which is sb5 2260, found in the "Answers to Starred
Exercises" on page 457 of "Understanding Symbolic Logic", Fifth
Edition (2008), by Virginia Klenk. The same proof may also be
interpreted as a Virtual Deduction Hilbert-style axiomatic proof. It
was completed automatically by the tools program completeusersproof.cmd,
which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof
Assistant. sb5ALT 43936 is sb5ALTVD 44324 without virtual deductions and
was automatically derived from sb5ALTVD 44324.
1:: | ⊢ ( [𝑦 / 𝑥]𝜑 ▶ [𝑦 / 𝑥]𝜑 )
| 2:: | ⊢ [𝑦 / 𝑥]𝑥 = 𝑦
| 3:1,2: | ⊢ ( [𝑦 / 𝑥]𝜑 ▶ [𝑦 / 𝑥](𝑥 = 𝑦
∧ 𝜑) )
| 4:3: | ⊢ ( [𝑦 / 𝑥]𝜑 ▶ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑
) )
| 5:4: | ⊢ ([𝑦 / 𝑥]𝜑 → ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)
)
| 6:: | ⊢ ( ∃𝑥(𝑥 = 𝑦 ∧ 𝜑) ▶ ∃𝑥(𝑥 =
𝑦 ∧ 𝜑) )
| 7:: | ⊢ ( ∃𝑥(𝑥 = 𝑦 ∧ 𝜑) , (𝑥 = 𝑦 ∧ 𝜑
) ▶ (𝑥 = 𝑦 ∧ 𝜑) )
| 8:7: | ⊢ ( ∃𝑥(𝑥 = 𝑦 ∧ 𝜑) , (𝑥 = 𝑦 ∧ 𝜑
) ▶ 𝜑 )
| 9:7: | ⊢ ( ∃𝑥(𝑥 = 𝑦 ∧ 𝜑) , (𝑥 = 𝑦 ∧ 𝜑
) ▶ 𝑥 = 𝑦 )
| 10:8,9: | ⊢ ( ∃𝑥(𝑥 = 𝑦 ∧ 𝜑) , (𝑥 = 𝑦 ∧ 𝜑
) ▶ [𝑦 / 𝑥]𝜑 )
| 101:: | ⊢ ([𝑦 / 𝑥]𝜑 → ∀𝑥[𝑦 / 𝑥]𝜑)
| 11:101,10: | ⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) → [𝑦 / 𝑥]𝜑
)
| 12:5,11: | ⊢ (([𝑦 / 𝑥]𝜑 → ∃𝑥(𝑥 = 𝑦 ∧ 𝜑
)) ∧ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) → [𝑦 / 𝑥]𝜑))
| qed:12: | ⊢ ([𝑦 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)
)
|
(Contributed by Alan Sare, 21-Apr-2013.) (Proof modification is
discouraged.) (New usage is discouraged.)
|
⊢ ([𝑦 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) |
|
Theorem | vk15.4jVD 44325 |
The following User's Proof is a Natural Deduction Sequent Calculus
transcription of the Fitch-style Natural Deduction proof of Unit 15
Excercise 4.f. found in the "Answers to Starred Exercises" on page 442
of "Understanding Symbolic Logic", Fifth Edition (2008), by Virginia
Klenk. The same proof may also be interpreted to be a Virtual Deduction
Hilbert-style axiomatic proof. It was completed automatically by the
tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2
and Norm Megill's Metamath Proof Assistant. vk15.4j 43939 is vk15.4jVD 44325
without virtual deductions and was automatically derived
from vk15.4jVD 44325. Step numbers greater than 25 are additional steps
necessary for the sequent calculus proof not contained in the
Fitch-style proof. Otherwise, step i of the User's Proof corresponds to
step i of the Fitch-style proof.
h1:: | ⊢ ¬ (∃𝑥¬ 𝜑 ∧ ∃𝑥(𝜓 ∧
¬ 𝜒))
| h2:: | ⊢ (∀𝑥𝜒 → ¬ ∃𝑥(𝜃 ∧ 𝜏
))
| h3:: | ⊢ ¬ ∀𝑥(𝜏 → 𝜑)
| 4:: | ⊢ ( ¬ ∃𝑥¬ 𝜃 ▶ ¬ ∃𝑥¬
𝜃 )
| 5:4: | ⊢ ( ¬ ∃𝑥¬ 𝜃 ▶ ∀𝑥𝜃 )
| 6:3: | ⊢ ∃𝑥(𝜏 ∧ ¬ 𝜑)
| 7:: | ⊢ ( ¬ ∃𝑥¬ 𝜃 , (𝜏 ∧ ¬
𝜑) ▶ (𝜏 ∧ ¬ 𝜑) )
| 8:7: | ⊢ ( ¬ ∃𝑥¬ 𝜃 , (𝜏 ∧ ¬
𝜑) ▶ 𝜏 )
| 9:7: | ⊢ ( ¬ ∃𝑥¬ 𝜃 , (𝜏 ∧ ¬
𝜑) ▶ ¬ 𝜑 )
| 10:5: | ⊢ ( ¬ ∃𝑥¬ 𝜃 ▶ 𝜃 )
| 11:10,8: | ⊢ ( ¬ ∃𝑥¬ 𝜃 , (𝜏 ∧ ¬
𝜑) ▶ (𝜃 ∧ 𝜏) )
| 12:11: | ⊢ ( ¬ ∃𝑥¬ 𝜃 , (𝜏 ∧ ¬
𝜑) ▶ ∃𝑥(𝜃 ∧ 𝜏) )
| 13:12: | ⊢ ( ¬ ∃𝑥¬ 𝜃 , (𝜏 ∧ ¬
𝜑) ▶ ¬ ¬ ∃𝑥(𝜃 ∧ 𝜏) )
| 14:2,13: | ⊢ ( ¬ ∃𝑥¬ 𝜃 , (𝜏 ∧ ¬
𝜑) ▶ ¬ ∀𝑥𝜒 )
| 140:: | ⊢ (∃𝑥¬ 𝜃 → ∀𝑥∃𝑥¬ 𝜃
)
| 141:140: | ⊢ (¬ ∃𝑥¬ 𝜃 → ∀𝑥¬ ∃𝑥
¬ 𝜃)
| 142:: | ⊢ (∀𝑥𝜒 → ∀𝑥∀𝑥𝜒)
| 143:142: | ⊢ (¬ ∀𝑥𝜒 → ∀𝑥¬ ∀𝑥𝜒
)
| 144:6,14,141,143: | ⊢ ( ¬ ∃𝑥¬ 𝜃 ▶ ¬ ∀𝑥𝜒
)
| 15:1: | ⊢ (¬ ∃𝑥¬ 𝜑 ∨ ¬ ∃𝑥(𝜓
∧ ¬ 𝜒))
| 16:9: | ⊢ ( ¬ ∃𝑥¬ 𝜃 , (𝜏 ∧ ¬
𝜑) ▶ ∃𝑥¬ 𝜑 )
| 161:: | ⊢ (∃𝑥¬ 𝜑 → ∀𝑥∃𝑥¬ 𝜑
)
| 162:6,16,141,161: | ⊢ ( ¬ ∃𝑥¬ 𝜃 ▶ ∃𝑥¬ 𝜑
)
| 17:162: | ⊢ ( ¬ ∃𝑥¬ 𝜃 ▶ ¬ ¬ ∃𝑥
¬ 𝜑 )
| 18:15,17: | ⊢ ( ¬ ∃𝑥¬ 𝜃 ▶ ¬ ∃𝑥(
𝜓 ∧ ¬ 𝜒) )
| 19:18: | ⊢ ( ¬ ∃𝑥¬ 𝜃 ▶ ∀𝑥(𝜓
→ 𝜒) )
| 20:144: | ⊢ ( ¬ ∃𝑥¬ 𝜃 ▶ ∃𝑥¬ 𝜒
)
| 21:: | ⊢ ( ¬ ∃𝑥¬ 𝜃 , ¬ 𝜒 ▶ ¬
𝜒 )
| 22:19: | ⊢ ( ¬ ∃𝑥¬ 𝜃 ▶ (𝜓 → 𝜒
) )
| 23:21,22: | ⊢ ( ¬ ∃𝑥¬ 𝜃 , ¬ 𝜒 ▶ ¬
𝜓 )
| 24:23: | ⊢ ( ¬ ∃𝑥¬ 𝜃 , ¬ 𝜒 ▶ ∃
𝑥¬ 𝜓 )
| 240:: | ⊢ (∃𝑥¬ 𝜓 → ∀𝑥∃𝑥¬ 𝜓
)
| 241:20,24,141,240: | ⊢ ( ¬ ∃𝑥¬ 𝜃 ▶ ∃𝑥¬ 𝜓
)
| 25:241: | ⊢ ( ¬ ∃𝑥¬ 𝜃 ▶ ¬ ∀𝑥𝜓
)
| qed:25: | ⊢ (¬ ∃𝑥¬ 𝜃 → ¬ ∀𝑥𝜓)
|
(Contributed by Alan Sare, 21-Apr-2013.) (Proof modification is
discouraged.) (New usage is discouraged.)
|
⊢ ¬
(∃𝑥 ¬ 𝜑 ∧ ∃𝑥(𝜓 ∧ ¬ 𝜒)) & ⊢ (∀𝑥𝜒 → ¬ ∃𝑥(𝜃 ∧ 𝜏)) & ⊢ ¬
∀𝑥(𝜏 → 𝜑) ⇒ ⊢ (¬ ∃𝑥 ¬ 𝜃 → ¬ ∀𝑥𝜓) |
|
Theorem | notnotrALTVD 44326 |
The following User's Proof is a Natural Deduction Sequent Calculus
transcription of the Fitch-style Natural Deduction proof of Theorem 5 of
Section 14 of [Margaris] p. 59 (which is notnotr 130). The same proof
may also be interpreted as a Virtual Deduction Hilbert-style
axiomatic proof. It was completed automatically by the tools program
completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm
Megill's Metamath Proof Assistant. notnotrALT 43940 is notnotrALTVD 44326
without virtual deductions and was automatically derived
from notnotrALTVD 44326. Step i of the User's Proof corresponds to
step i of the Fitch-style proof.
1:: | ⊢ ( ¬ ¬ 𝜑 ▶ ¬ ¬ 𝜑 )
| 2:: | ⊢ (¬ ¬ 𝜑 → (¬ 𝜑 → ¬ ¬ ¬ 𝜑))
| 3:1: | ⊢ ( ¬ ¬ 𝜑 ▶ (¬ 𝜑 → ¬ ¬ ¬ 𝜑) )
| 4:: | ⊢ ((¬ 𝜑 → ¬ ¬ ¬ 𝜑) → (¬ ¬ 𝜑 →
𝜑))
| 5:3: | ⊢ ( ¬ ¬ 𝜑 ▶ (¬ ¬ 𝜑 → 𝜑) )
| 6:5,1: | ⊢ ( ¬ ¬ 𝜑 ▶ 𝜑 )
| qed:6: | ⊢ (¬ ¬ 𝜑 → 𝜑)
|
(Contributed by Alan Sare, 21-Apr-2013.) (Proof modification is
discouraged.) (New usage is discouraged.)
|
⊢ (¬ ¬
𝜑 → 𝜑) |
|
Theorem | con3ALTVD 44327 |
The following User's Proof is a Natural Deduction Sequent Calculus
transcription of the Fitch-style Natural Deduction proof of Theorem 7 of
Section 14 of [Margaris] p. 60 (which is con3 153). The same proof may
also be interpreted to be a Virtual Deduction Hilbert-style axiomatic
proof. It was completed automatically by the tools program
completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm
Megill's Metamath Proof Assistant. con3ALT2 43941 is con3ALTVD 44327 without
virtual deductions and was automatically derived from con3ALTVD 44327.
Step i of the User's Proof corresponds to step i of the Fitch-style proof.
1:: | ⊢ ( (𝜑 → 𝜓) ▶ (𝜑 → 𝜓) )
| 2:: | ⊢ ( (𝜑 → 𝜓) , ¬ ¬ 𝜑 ▶ ¬ ¬ 𝜑 )
| 3:: | ⊢ (¬ ¬ 𝜑 → 𝜑)
| 4:2: | ⊢ ( (𝜑 → 𝜓) , ¬ ¬ 𝜑 ▶ 𝜑 )
| 5:1,4: | ⊢ ( (𝜑 → 𝜓) , ¬ ¬ 𝜑 ▶ 𝜓 )
| 6:: | ⊢ (𝜓 → ¬ ¬ 𝜓)
| 7:6,5: | ⊢ ( (𝜑 → 𝜓) , ¬ ¬ 𝜑 ▶ ¬ ¬ 𝜓 )
| 8:7: | ⊢ ( (𝜑 → 𝜓) ▶ (¬ ¬ 𝜑 → ¬ ¬ 𝜓
) )
| 9:: | ⊢ ((¬ ¬ 𝜑 → ¬ ¬ 𝜓) → (¬ 𝜓 →
¬ 𝜑))
| 10:8: | ⊢ ( (𝜑 → 𝜓) ▶ (¬ 𝜓 → ¬ 𝜑) )
| qed:10: | ⊢ ((𝜑 → 𝜓) → (¬ 𝜓 → ¬ 𝜑))
|
(Contributed by Alan Sare, 21-Apr-2013.) (Proof modification is
discouraged.) (New usage is discouraged.)
|
⊢ ((𝜑 → 𝜓) → (¬ 𝜓 → ¬ 𝜑)) |
|
21.39.9 Theorems proved using conjunction-form
Virtual Deduction
|
|
Theorem | elpwgdedVD 44328 |
Membership in a power class. Theorem 86 of [Suppes] p. 47. Derived
from elpwg 4601. In form of VD deduction with 𝜑 and 𝜓 as
variable virtual hypothesis collections based on Mario Carneiro's
metavariable concept. elpwgded 43975 is elpwgdedVD 44328 using conventional
notation. (Contributed by Alan Sare, 23-Apr-2015.)
(Proof modification is discouraged.) (New usage is discouraged.)
|
⊢ ( 𝜑 ▶ 𝐴 ∈ V ) & ⊢ ( 𝜓 ▶ 𝐴 ⊆ 𝐵 )
⇒ ⊢ ( ( 𝜑 , 𝜓 ) ▶ 𝐴 ∈ 𝒫 𝐵 ) |
|
Theorem | sspwimp 44329 |
If a class is a subclass of another class, then its power class is a
subclass of that other class's power class. Left-to-right implication
of Exercise 18 of [TakeutiZaring]
p. 18. For the biconditional, see
sspwb 5445. The proof sspwimp 44329, using conventional notation, was
translated from virtual deduction form, sspwimpVD 44330, using a
translation program. (Contributed by Alan Sare, 23-Apr-2015.)
(Proof modification is discouraged.) (New usage is discouraged.)
|
⊢ (𝐴 ⊆ 𝐵 → 𝒫 𝐴 ⊆ 𝒫 𝐵) |
|
Theorem | sspwimpVD 44330 |
The following User's Proof is a Virtual Deduction proof (see wvd1 43980)
using conjunction-form virtual hypothesis collections. It was completed
manually, but has the potential to be completed automatically by a tools
program which would invoke Mel L. O'Cat's mmj2 and Norm Megill's
Metamath Proof Assistant.
sspwimp 44329 is sspwimpVD 44330 without virtual deductions and was derived
from sspwimpVD 44330. (Contributed by Alan Sare, 23-Apr-2015.)
(Proof modification is discouraged.) (New usage is discouraged.)
1:: | ⊢ ( 𝐴 ⊆ 𝐵 ▶ 𝐴 ⊆ 𝐵 )
| 2:: | ⊢ ( .............. 𝑥 ∈ 𝒫 𝐴
▶ 𝑥 ∈ 𝒫 𝐴 )
| 3:2: | ⊢ ( .............. 𝑥 ∈ 𝒫 𝐴
▶ 𝑥 ⊆ 𝐴 )
| 4:3,1: | ⊢ ( ( 𝐴 ⊆ 𝐵 , 𝑥 ∈ 𝒫 𝐴 ) ▶ 𝑥 ⊆ 𝐵 )
| 5:: | ⊢ 𝑥 ∈ V
| 6:4,5: | ⊢ ( ( 𝐴 ⊆ 𝐵 , 𝑥 ∈ 𝒫 𝐴 ) ▶ 𝑥 ∈ 𝒫 𝐵
)
| 7:6: | ⊢ ( 𝐴 ⊆ 𝐵 ▶ (𝑥 ∈ 𝒫 𝐴 → 𝑥 ∈ 𝒫 𝐵)
)
| 8:7: | ⊢ ( 𝐴 ⊆ 𝐵 ▶ ∀𝑥(𝑥 ∈ 𝒫 𝐴 → 𝑥 ∈
𝒫 𝐵) )
| 9:8: | ⊢ ( 𝐴 ⊆ 𝐵 ▶ 𝒫 𝐴 ⊆ 𝒫 𝐵 )
| qed:9: | ⊢ (𝐴 ⊆ 𝐵 → 𝒫 𝐴 ⊆ 𝒫 𝐵)
|
|
⊢ (𝐴 ⊆ 𝐵 → 𝒫 𝐴 ⊆ 𝒫 𝐵) |
|
Theorem | sspwimpcf 44331 |
If a class is a subclass of another class, then its power class is a
subclass of that other class's power class. Left-to-right implication
of Exercise 18 of [TakeutiZaring]
p. 18. sspwimpcf 44331, using
conventional notation, was translated from its virtual deduction form,
sspwimpcfVD 44332, using a translation program. (Contributed
by Alan Sare,
13-Jun-2015.) (Proof modification is discouraged.)
(New usage is discouraged.)
|
⊢ (𝐴 ⊆ 𝐵 → 𝒫 𝐴 ⊆ 𝒫 𝐵) |
|
Theorem | sspwimpcfVD 44332 |
The following User's Proof is a Virtual Deduction proof (see wvd1 43980)
using conjunction-form virtual hypothesis collections. It was completed
automatically by a tools program which would invokes Mel L. O'Cat's mmj2
and Norm Megill's Metamath Proof Assistant.
sspwimpcf 44331 is sspwimpcfVD 44332 without virtual deductions and was derived
from sspwimpcfVD 44332.
The version of completeusersproof.cmd used is capable of only generating
conjunction-form unification theorems, not unification deductions.
(Contributed by Alan Sare, 13-Jun-2015.)
(Proof modification is discouraged.) (New usage is discouraged.)
1:: | ⊢ ( 𝐴 ⊆ 𝐵 ▶ 𝐴 ⊆ 𝐵 )
| 2:: | ⊢ ( ........... 𝑥 ∈ 𝒫 𝐴
▶ 𝑥 ∈ 𝒫 𝐴 )
| 3:2: | ⊢ ( ........... 𝑥 ∈ 𝒫 𝐴
▶ 𝑥 ⊆ 𝐴 )
| 4:3,1: | ⊢ ( ( 𝐴 ⊆ 𝐵 , 𝑥 ∈ 𝒫 𝐴 ) ▶ 𝑥 ⊆ 𝐵 )
| 5:: | ⊢ 𝑥 ∈ V
| 6:4,5: | ⊢ ( ( 𝐴 ⊆ 𝐵 , 𝑥 ∈ 𝒫 𝐴 ) ▶ 𝑥 ∈ 𝒫 𝐵
)
| 7:6: | ⊢ ( 𝐴 ⊆ 𝐵 ▶ (𝑥 ∈ 𝒫 𝐴 → 𝑥 ∈ 𝒫 𝐵)
)
| 8:7: | ⊢ ( 𝐴 ⊆ 𝐵 ▶ ∀𝑥(𝑥 ∈ 𝒫 𝐴 → 𝑥 ∈
𝒫 𝐵) )
| 9:8: | ⊢ ( 𝐴 ⊆ 𝐵 ▶ 𝒫 𝐴 ⊆ 𝒫 𝐵 )
| qed:9: | ⊢ (𝐴 ⊆ 𝐵 → 𝒫 𝐴 ⊆ 𝒫 𝐵)
|
|
⊢ (𝐴 ⊆ 𝐵 → 𝒫 𝐴 ⊆ 𝒫 𝐵) |
|
Theorem | suctrALTcf 44333 |
The sucessor of a transitive class is transitive. suctrALTcf 44333, using
conventional notation, was translated from virtual deduction form,
suctrALTcfVD 44334, using a translation program. (Contributed
by Alan
Sare, 13-Jun-2015.) (Proof modification is discouraged.)
(New usage is discouraged.)
|
⊢ (Tr 𝐴 → Tr suc 𝐴) |
|
Theorem | suctrALTcfVD 44334 |
The following User's Proof is a Virtual Deduction proof (see wvd1 43980)
using conjunction-form virtual hypothesis collections. The
conjunction-form version of completeusersproof.cmd. It allows the User
to avoid superflous virtual hypotheses. This proof was completed
automatically by a tools program which invokes Mel L. O'Cat's
mmj2 and Norm Megill's Metamath Proof Assistant. suctrALTcf 44333
is suctrALTcfVD 44334 without virtual deductions and was derived
automatically from suctrALTcfVD 44334. The version of
completeusersproof.cmd used is capable of only generating
conjunction-form unification theorems, not unification deductions.
(Contributed by Alan Sare, 13-Jun-2015.)
(Proof modification is discouraged.) (New usage is discouraged.)
1:: | ⊢ ( Tr 𝐴 ▶ Tr 𝐴 )
| 2:: | ⊢ ( ......... (𝑧 ∈ 𝑦 ∧ 𝑦 ∈
suc 𝐴) ▶ (𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴) )
| 3:2: | ⊢ ( ......... (𝑧 ∈ 𝑦 ∧ 𝑦 ∈
suc 𝐴) ▶ 𝑧 ∈ 𝑦 )
| 4:: | ⊢ ( ...................................
....... 𝑦 ∈ 𝐴 ▶ 𝑦 ∈ 𝐴 )
| 5:1,3,4: | ⊢ ( ( Tr 𝐴 , (𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴)
, 𝑦 ∈ 𝐴 ) ▶ 𝑧 ∈ 𝐴 )
| 6:: | ⊢ 𝐴 ⊆ suc 𝐴
| 7:5,6: | ⊢ ( ( Tr 𝐴 , (𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴)
, 𝑦 ∈ 𝐴 ) ▶ 𝑧 ∈ suc 𝐴 )
| 8:7: | ⊢ ( ( Tr 𝐴 , (𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴)
) ▶ (𝑦 ∈ 𝐴 → 𝑧 ∈ suc 𝐴) )
| 9:: | ⊢ ( ...................................
...... 𝑦 = 𝐴 ▶ 𝑦 = 𝐴 )
| 10:3,9: | ⊢ ( ........ ( (𝑧 ∈ 𝑦 ∧ 𝑦 ∈
suc 𝐴), 𝑦 = 𝐴 ) ▶ 𝑧 ∈ 𝐴 )
| 11:10,6: | ⊢ ( ........ ( (𝑧 ∈ 𝑦 ∧ 𝑦 ∈
suc 𝐴), 𝑦 = 𝐴 ) ▶ 𝑧 ∈ suc 𝐴 )
| 12:11: | ⊢ ( .......... (𝑧 ∈ 𝑦 ∧ 𝑦 ∈
suc 𝐴) ▶ (𝑦 = 𝐴 → 𝑧 ∈ suc 𝐴) )
| 13:2: | ⊢ ( .......... (𝑧 ∈ 𝑦 ∧ 𝑦 ∈
suc 𝐴) ▶ 𝑦 ∈ suc 𝐴 )
| 14:13: | ⊢ ( .......... (𝑧 ∈ 𝑦 ∧ 𝑦 ∈
suc 𝐴) ▶ (𝑦 ∈ 𝐴 ∨ 𝑦 = 𝐴) )
| 15:8,12,14: | ⊢ ( ( Tr 𝐴 , (𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴)
) ▶ 𝑧 ∈ suc 𝐴 )
| 16:15: | ⊢ ( Tr 𝐴 ▶ ((𝑧 ∈ 𝑦 ∧ 𝑦 ∈
suc 𝐴) → 𝑧 ∈ suc 𝐴) )
| 17:16: | ⊢ ( Tr 𝐴 ▶ ∀𝑧∀𝑦((𝑧 ∈
𝑦 ∧ 𝑦 ∈ suc 𝐴) → 𝑧 ∈ suc 𝐴) )
| 18:17: | ⊢ ( Tr 𝐴 ▶ Tr suc 𝐴 )
| qed:18: | ⊢ (Tr 𝐴 → Tr suc 𝐴)
|
|
⊢ (Tr 𝐴 → Tr suc 𝐴) |
|
21.39.10 Theorems with a VD proof in
conventional notation derived from a VD proof
|
|
Theorem | suctrALT3 44335 |
The successor of a transitive class is transitive. suctrALT3 44335 is the
completed proof in conventional notation of the Virtual Deduction proof
https://us.metamath.org/other/completeusersproof/suctralt3vd.html 44335.
It was completed manually. The potential for automated derivation from
the VD proof exists. See wvd1 43980 for a description of Virtual
Deduction.
Some sub-theorems of the proof were completed using a unification
deduction (e.g., the sub-theorem whose assertion is step 19 used
jaoded 43977). Unification deductions employ Mario
Carneiro's metavariable
concept. Some sub-theorems were completed using a unification theorem
(e.g., the sub-theorem whose assertion is step 24 used dftr2 5261) .
(Contributed by Alan Sare, 3-Dec-2015.)
(Proof modification is discouraged.) (New usage is discouraged.)
|
⊢ (Tr 𝐴 → Tr suc 𝐴) |
|
Theorem | sspwimpALT 44336 |
If a class is a subclass of another class, then its power class is a
subclass of that other class's power class. Left-to-right implication
of Exercise 18 of [TakeutiZaring]
p. 18. sspwimpALT 44336 is the completed
proof in conventional notation of the Virtual Deduction proof
https://us.metamath.org/other/completeusersproof/sspwimpaltvd.html 44336.
It was completed manually. The potential for automated derivation from
the VD proof exists. See wvd1 43980 for a description of Virtual
Deduction.
Some sub-theorems of the proof were completed using a unification
deduction (e.g., the sub-theorem whose assertion is step 9 used
elpwgded 43975). Unification deductions employ Mario
Carneiro's
metavariable concept. Some sub-theorems were completed using a
unification theorem (e.g., the sub-theorem whose assertion is step 5
used elpwi 4605). (Contributed by Alan Sare, 3-Dec-2015.)
(Proof modification is discouraged.) (New usage is discouraged.)
|
⊢ (𝐴 ⊆ 𝐵 → 𝒫 𝐴 ⊆ 𝒫 𝐵) |
|
Theorem | unisnALT 44337 |
A set equals the union of its singleton. Theorem 8.2 of [Quine] p. 53.
The User manually input on a mmj2 Proof Worksheet, without labels, all
steps of unisnALT 44337 except 1, 11, 15, 21, and 30. With
execution of the
mmj2 unification command, mmj2 could find labels for all steps except
for 2, 12, 16, 22, and 31 (and the then non-existing steps 1, 11, 15,
21, and 30). mmj2 could not find reference theorems for those five steps
because the hypothesis field of each of these steps was empty and none
of those steps unifies with a theorem in set.mm. Each of these five
steps is a semantic variation of a theorem in set.mm and is 2-step
provable. mmj2 does not have the ability to automatically generate the
semantic variation in set.mm of a theorem in a mmj2 Proof Worksheet
unless the theorem in the Proof Worksheet is labeled with a 1-hypothesis
deduction whose hypothesis is a theorem in set.mm which unifies with the
theorem in the Proof Worksheet. The stepprover.c program, which invokes
mmj2, has this capability. stepprover.c automatically generated steps 1,
11, 15, 21, and 30, labeled all steps, and generated the RPN proof of
unisnALT 44337. Roughly speaking, stepprover.c added to
the Proof
Worksheet a labeled duplicate step of each non-unifying theorem for each
label in a text file, labels.txt, containing a list of labels provided
by the User. Upon mmj2 unification, stepprover.c identified a label for
each of the five theorems which 2-step proves it. For unisnALT 44337, the
label list is a list of all 1-hypothesis propositional calculus
deductions in set.mm. stepproverp.c is the same as stepprover.c except
that it intermittently pauses during execution, allowing the User to
observe the changes to a text file caused by the execution of particular
statements of the program. (Contributed by Alan Sare, 19-Aug-2016.)
(Proof modification is discouraged.) (New usage is discouraged.)
|
⊢ 𝐴 ∈
V ⇒ ⊢ ∪
{𝐴} = 𝐴 |
|
21.39.11 Theorems with a proof in conventional
notation derived from a VD proof
Theorems with a proof in conventional notation automatically derived by
completeusersproof.c from a Virtual Deduction User's Proof.
|
|
Theorem | notnotrALT2 44338 |
Converse of double negation. Theorem *2.14 of [WhiteheadRussell] p. 102.
Proof derived by completeusersproof.c from User's Proof in
VirtualDeductionProofs.txt. (Contributed by Alan Sare, 11-Sep-2016.)
(Proof modification is discouraged.) (New usage is discouraged.)
|
⊢ (¬ ¬
𝜑 → 𝜑) |
|
Theorem | sspwimpALT2 44339 |
If a class is a subclass of another class, then its power class is a
subclass of that other class's power class. Left-to-right implication
of Exercise 18 of [TakeutiZaring]
p. 18. Proof derived by
completeusersproof.c from User's Proof in VirtualDeductionProofs.txt.
The User's Proof in html format is displayed in
https://us.metamath.org/other/completeusersproof/sspwimpaltvd.html.
(Contributed by Alan Sare, 11-Sep-2016.)
(Proof modification is discouraged.) (New usage is discouraged.)
|
⊢ (𝐴 ⊆ 𝐵 → 𝒫 𝐴 ⊆ 𝒫 𝐵) |
|
Theorem | e2ebindALT 44340 |
Absorption of an existential quantifier of a double existential quantifier
of non-distinct variables. The proof is derived by completeusersproof.c
from User's Proof in VirtualDeductionProofs.txt. The User's Proof in html
format is displayed in e2ebindVD 44323. (Contributed by Alan Sare,
11-Sep-2016.) (Proof modification is discouraged.)
(New usage is discouraged.)
|
⊢ (∀𝑥 𝑥 = 𝑦 → (∃𝑥∃𝑦𝜑 ↔ ∃𝑦𝜑)) |
|
Theorem | ax6e2ndALT 44341* |
If at least two sets exist (dtru 5432), then the same is true expressed
in an alternate form similar to the form of ax6e 2377.
The proof is
derived by completeusersproof.c from User's Proof in
VirtualDeductionProofs.txt. The User's Proof in html format is
displayed in ax6e2ndVD 44319. (Contributed by Alan Sare, 11-Sep-2016.)
(Proof modification is discouraged.) (New usage is discouraged.)
|
⊢ (¬
∀𝑥 𝑥 = 𝑦 → ∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣)) |
|
Theorem | ax6e2ndeqALT 44342* |
"At least two sets exist" expressed in the form of dtru 5432
is logically
equivalent to the same expressed in a form similar to ax6e 2377
if dtru 5432
is false implies 𝑢 = 𝑣. Proof derived by
completeusersproof.c from
User's Proof in VirtualDeductionProofs.txt. The User's Proof in html
format is displayed in ax6e2ndeqVD 44320. (Contributed by Alan Sare,
11-Sep-2016.) (Proof modification is discouraged.)
(New usage is discouraged.)
|
⊢ ((¬
∀𝑥 𝑥 = 𝑦 ∨ 𝑢 = 𝑣) ↔ ∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣)) |
|
Theorem | 2sb5ndALT 44343* |
Equivalence for double substitution 2sb5 2264 without distinct 𝑥,
𝑦 requirement. 2sb5nd 43971 is derived from 2sb5ndVD 44321. The proof is
derived by completeusersproof.c from User's Proof in
VirtualDeductionProofs.txt. The User's Proof in html format is
displayed in 2sb5ndVD 44321. (Contributed by Alan Sare, 19-Sep-2016.)
(Proof modification is discouraged.) (New usage is discouraged.)
|
⊢ ((¬
∀𝑥 𝑥 = 𝑦 ∨ 𝑢 = 𝑣) → ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 ↔ ∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑))) |
|
Theorem | chordthmALT 44344* |
The intersecting chords theorem. If points A, B, C, and D lie on a
circle (with center Q, say), and the point P is on the interior of the
segments AB and CD, then the two products of lengths PA · PB and
PC · PD are equal. The Euclidean plane is identified with the
complex plane, and the fact that P is on AB and on CD is expressed by
the hypothesis that the angles APB and CPD are equal to π. The
result is proven by using chordthmlem5 26761 twice to show that PA
· PB and PC · PD both equal BQ
2
−
PQ
2
. This is similar to the proof of the
theorem given in Euclid's Elements, where it is Proposition
III.35.
Proven by David Moews on 28-Feb-2017 as chordthm 26762.
https://us.metamath.org/other/completeusersproof/chordthmaltvd.html 26762 is
a Virtual
Deduction User's Proof transcription of chordthm 26762. That VD User's
Proof was input into completeusersproof, automatically generating this
chordthmALT 44344 Metamath proof. (Contributed by Alan Sare,
19-Sep-2017.)
(Proof modification is discouraged.) (New usage is discouraged.)
|
⊢ 𝐹 = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0})
↦ (ℑ‘(log‘(𝑦 / 𝑥)))) & ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐷 ∈ ℂ) & ⊢ (𝜑 → 𝑃 ∈ ℂ) & ⊢ (𝜑 → 𝐴 ≠ 𝑃)
& ⊢ (𝜑 → 𝐵 ≠ 𝑃)
& ⊢ (𝜑 → 𝐶 ≠ 𝑃)
& ⊢ (𝜑 → 𝐷 ≠ 𝑃)
& ⊢ (𝜑 → ((𝐴 − 𝑃)𝐹(𝐵 − 𝑃)) = π) & ⊢ (𝜑 → ((𝐶 − 𝑃)𝐹(𝐷 − 𝑃)) = π) & ⊢ (𝜑 → 𝑄 ∈ ℂ) & ⊢ (𝜑 → (abs‘(𝐴 − 𝑄)) = (abs‘(𝐵 − 𝑄))) & ⊢ (𝜑 → (abs‘(𝐴 − 𝑄)) = (abs‘(𝐶 − 𝑄))) & ⊢ (𝜑 → (abs‘(𝐴 − 𝑄)) = (abs‘(𝐷 − 𝑄))) ⇒ ⊢ (𝜑 → ((abs‘(𝑃 − 𝐴)) · (abs‘(𝑃 − 𝐵))) = ((abs‘(𝑃 − 𝐶)) · (abs‘(𝑃 − 𝐷)))) |
|
Theorem | isosctrlem1ALT 44345 |
Lemma for isosctr 26746. This proof was automatically derived by
completeusersproof from its Virtual Deduction proof counterpart
https://us.metamath.org/other/completeusersproof/isosctrlem1altvd.html 26746.
As it is verified by the Metamath program, isosctrlem1ALT 44345 verifies
https://us.metamath.org/other/completeusersproof/isosctrlem1altvd.html 44345.
(Contributed by Alan Sare, 22-Apr-2018.)
(Proof modification is discouraged.) (New usage is discouraged.)
|
⊢ ((𝐴 ∈ ℂ ∧
(abs‘𝐴) = 1 ∧
¬ 1 = 𝐴) →
(ℑ‘(log‘(1 − 𝐴))) ≠ π) |
|
Theorem | iunconnlem2 44346* |
The indexed union of connected overlapping subspaces sharing a common
point is connected. This proof was automatically derived by
completeusersproof from its Virtual Deduction proof counterpart
https://us.metamath.org/other/completeusersproof/iunconlem2vd.html.
As it is verified by the Metamath program, iunconnlem2 44346 verifies
https://us.metamath.org/other/completeusersproof/iunconlem2vd.html 44346.
(Contributed by Alan Sare, 22-Apr-2018.)
(Proof modification is discouraged.) (New usage is discouraged.)
|
⊢ (𝜓 ↔ ((((((𝜑 ∧ 𝑢 ∈ 𝐽) ∧ 𝑣 ∈ 𝐽) ∧ (𝑢 ∩ ∪
𝑘 ∈ 𝐴 𝐵) ≠ ∅) ∧ (𝑣 ∩ ∪
𝑘 ∈ 𝐴 𝐵) ≠ ∅) ∧ (𝑢 ∩ 𝑣) ⊆ (𝑋 ∖ ∪ 𝑘 ∈ 𝐴 𝐵)) ∧ ∪ 𝑘 ∈ 𝐴 𝐵 ⊆ (𝑢 ∪ 𝑣))) & ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ⊆ 𝑋)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑃 ∈ 𝐵)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝐽 ↾t 𝐵) ∈ Conn)
⇒ ⊢ (𝜑 → (𝐽 ↾t ∪ 𝑘 ∈ 𝐴 𝐵) ∈ Conn) |
|
Theorem | iunconnALT 44347* |
The indexed union of connected overlapping subspaces sharing a common
point is connected. This proof was automatically derived by
completeusersproof from its Virtual Deduction proof counterpart
https://us.metamath.org/other/completeusersproof/iunconaltvd.html.
As it is verified by the Metamath program, iunconnALT 44347 verifies
https://us.metamath.org/other/completeusersproof/iunconaltvd.html 44347.
(Contributed by Alan Sare, 22-Apr-2018.)
(Proof modification is discouraged.) (New usage is discouraged.)
|
⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ⊆ 𝑋)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑃 ∈ 𝐵)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝐽 ↾t 𝐵) ∈ Conn)
⇒ ⊢ (𝜑 → (𝐽 ↾t ∪ 𝑘 ∈ 𝐴 𝐵) ∈ Conn) |
|
Theorem | sineq0ALT 44348 |
A complex number whose sine is zero is an integer multiple of π.
The Virtual Deduction form of the proof is
https://us.metamath.org/other/completeusersproof/sineq0altvd.html.
The
Metamath form of the proof is sineq0ALT 44348. The Virtual Deduction proof
is based on Mario Carneiro's revision of Norm Megill's proof of sineq0 26451.
The Virtual Deduction proof is verified by automatically transforming it
into the Metamath form of the proof using completeusersproof, which is
verified by the Metamath program. The proof of
https://us.metamath.org/other/completeusersproof/sineq0altro.html 26451 is a
form of the completed proof which preserves the Virtual Deduction proof's
step numbers and their ordering. (Contributed by Alan Sare, 13-Jun-2018.)
(Proof modification is discouraged.) (New usage is discouraged.)
|
⊢ (𝐴 ∈ ℂ →
((sin‘𝐴) = 0 ↔
(𝐴 / π) ∈
ℤ)) |
|
21.40 Mathbox for Glauco
Siliprandi
|
|
21.40.1 Miscellanea
|
|
Theorem | evth2f 44349* |
A version of evth2 24879 using bound-variable hypotheses instead of
distinct
variable conditions. (Contributed by Glauco Siliprandi,
20-Apr-2017.)
|
⊢
Ⅎ𝑥𝐹
& ⊢ Ⅎ𝑦𝐹
& ⊢ Ⅎ𝑥𝑋
& ⊢ Ⅎ𝑦𝑋
& ⊢ 𝑋 = ∪ 𝐽 & ⊢ 𝐾 = (topGen‘ran
(,))
& ⊢ (𝜑 → 𝐽 ∈ Comp) & ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) & ⊢ (𝜑 → 𝑋 ≠ ∅)
⇒ ⊢ (𝜑 → ∃𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝐹‘𝑥) ≤ (𝐹‘𝑦)) |
|
Theorem | elunif 44350* |
A version of eluni 4906 using bound-variable hypotheses instead of
distinct
variable conditions. (Contributed by Glauco Siliprandi,
20-Apr-2017.)
|
⊢
Ⅎ𝑥𝐴
& ⊢ Ⅎ𝑥𝐵 ⇒ ⊢ (𝐴 ∈ ∪ 𝐵 ↔ ∃𝑥(𝐴 ∈ 𝑥 ∧ 𝑥 ∈ 𝐵)) |
|
Theorem | rzalf 44351 |
A version of rzal 4504 using bound-variable hypotheses instead of
distinct
variable conditions. (Contributed by Glauco Siliprandi,
20-Apr-2017.)
|
⊢ Ⅎ𝑥 𝐴 = ∅ ⇒ ⊢ (𝐴 = ∅ → ∀𝑥 ∈ 𝐴 𝜑) |
|
Theorem | fvelrnbf 44352 |
A version of fvelrnb 6953 using bound-variable hypotheses instead of
distinct variable conditions. (Contributed by Glauco Siliprandi,
20-Apr-2017.)
|
⊢
Ⅎ𝑥𝐴
& ⊢ Ⅎ𝑥𝐵
& ⊢ Ⅎ𝑥𝐹 ⇒ ⊢ (𝐹 Fn 𝐴 → (𝐵 ∈ ran 𝐹 ↔ ∃𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝐵)) |
|
Theorem | rfcnpre1 44353 |
If F is a continuous function with respect to the standard topology,
then the preimage A of the values greater than a given extended real B
is an open set. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
|
⊢
Ⅎ𝑥𝐵
& ⊢ Ⅎ𝑥𝐹
& ⊢ Ⅎ𝑥𝜑
& ⊢ 𝐾 = (topGen‘ran (,)) & ⊢ 𝑋 = ∪
𝐽 & ⊢ 𝐴 = {𝑥 ∈ 𝑋 ∣ 𝐵 < (𝐹‘𝑥)}
& ⊢ (𝜑 → 𝐵 ∈ ℝ*) & ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) ⇒ ⊢ (𝜑 → 𝐴 ∈ 𝐽) |
|
Theorem | ubelsupr 44354* |
If U belongs to A and U is an upper bound, then U is the sup of A.
(Contributed by Glauco Siliprandi, 20-Apr-2017.)
|
⊢ ((𝐴 ⊆ ℝ ∧ 𝑈 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝑥 ≤ 𝑈) → 𝑈 = sup(𝐴, ℝ, < )) |
|
Theorem | fsumcnf 44355* |
A finite sum of functions to complex numbers from a common topological
space is continuous, without disjoint var constraint x ph. The class
expression for B normally contains free variables k and x to index it.
(Contributed by Glauco Siliprandi, 20-Apr-2017.)
|
⊢ 𝐾 =
(TopOpen‘ℂfld) & ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝐽 Cn 𝐾)) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ 𝐴 𝐵) ∈ (𝐽 Cn 𝐾)) |
|
Theorem | mulltgt0 44356 |
The product of a negative and a positive number is negative. (Contributed
by Glauco Siliprandi, 20-Apr-2017.)
|
⊢ (((𝐴 ∈ ℝ ∧ 𝐴 < 0) ∧ (𝐵 ∈ ℝ ∧ 0 <
𝐵)) → (𝐴 · 𝐵) < 0) |
|
Theorem | rspcegf 44357 |
A version of rspcev 3607 using bound-variable hypotheses instead of
distinct variable conditions. (Contributed by Glauco Siliprandi,
20-Apr-2017.)
|
⊢ Ⅎ𝑥𝜓
& ⊢ Ⅎ𝑥𝐴
& ⊢ Ⅎ𝑥𝐵
& ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ ((𝐴 ∈ 𝐵 ∧ 𝜓) → ∃𝑥 ∈ 𝐵 𝜑) |
|
Theorem | rabexgf 44358 |
A version of rabexg 5327 using bound-variable hypotheses instead of
distinct variable conditions. (Contributed by Glauco Siliprandi,
20-Apr-2017.)
|
⊢
Ⅎ𝑥𝐴 ⇒ ⊢ (𝐴 ∈ 𝑉 → {𝑥 ∈ 𝐴 ∣ 𝜑} ∈ V) |
|
Theorem | fcnre 44359 |
A function continuous with respect to the standard topology, is a real
mapping. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
|
⊢ 𝐾 = (topGen‘ran
(,))
& ⊢ 𝑇 = ∪ 𝐽 & ⊢ 𝐶 = (𝐽 Cn 𝐾)
& ⊢ (𝜑 → 𝐹 ∈ 𝐶) ⇒ ⊢ (𝜑 → 𝐹:𝑇⟶ℝ) |
|
Theorem | sumsnd 44360* |
A sum of a singleton is the term. The deduction version of sumsn 15718.
(Contributed by Glauco Siliprandi, 20-Apr-2017.)
|
⊢ (𝜑 → Ⅎ𝑘𝐵)
& ⊢ Ⅎ𝑘𝜑
& ⊢ ((𝜑 ∧ 𝑘 = 𝑀) → 𝐴 = 𝐵)
& ⊢ (𝜑 → 𝑀 ∈ 𝑉)
& ⊢ (𝜑 → 𝐵 ∈ ℂ)
⇒ ⊢ (𝜑 → Σ𝑘 ∈ {𝑀}𝐴 = 𝐵) |
|
Theorem | evthf 44361* |
A version of evth 24878 using bound-variable hypotheses instead of
distinct
variable conditions. (Contributed by Glauco Siliprandi,
20-Apr-2017.)
|
⊢
Ⅎ𝑥𝐹
& ⊢ Ⅎ𝑦𝐹
& ⊢ Ⅎ𝑥𝑋
& ⊢ Ⅎ𝑦𝑋
& ⊢ Ⅎ𝑥𝜑
& ⊢ Ⅎ𝑦𝜑
& ⊢ 𝑋 = ∪ 𝐽 & ⊢ 𝐾 = (topGen‘ran
(,))
& ⊢ (𝜑 → 𝐽 ∈ Comp) & ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) & ⊢ (𝜑 → 𝑋 ≠ ∅)
⇒ ⊢ (𝜑 → ∃𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝐹‘𝑦) ≤ (𝐹‘𝑥)) |
|
Theorem | cnfex 44362 |
The class of continuous functions between two topologies is a set.
(Contributed by Glauco Siliprandi, 20-Apr-2017.)
|
⊢ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝐽 Cn 𝐾) ∈ V) |
|
Theorem | fnchoice 44363* |
For a finite set, a choice function exists, without using the axiom of
choice. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
|
⊢ (𝐴 ∈ Fin → ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥))) |
|
Theorem | refsumcn 44364* |
A finite sum of continuous real functions, from a common topological
space, is continuous. The class expression for B normally contains free
variables k and x to index it. See fsumcn 24781 for the analogous theorem
on continuous complex functions. (Contributed by Glauco Siliprandi,
20-Apr-2017.)
|
⊢ Ⅎ𝑥𝜑
& ⊢ 𝐾 = (topGen‘ran (,)) & ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝐽 Cn 𝐾)) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ 𝐴 𝐵) ∈ (𝐽 Cn 𝐾)) |
|
Theorem | rfcnpre2 44365 |
If 𝐹 is a continuous function with
respect to the standard topology,
then the preimage A of the values smaller than a given extended real
𝐵, is an open set. (Contributed by
Glauco Siliprandi,
20-Apr-2017.)
|
⊢
Ⅎ𝑥𝐵
& ⊢ Ⅎ𝑥𝐹
& ⊢ Ⅎ𝑥𝜑
& ⊢ 𝐾 = (topGen‘ran (,)) & ⊢ 𝑋 = ∪
𝐽 & ⊢ 𝐴 = {𝑥 ∈ 𝑋 ∣ (𝐹‘𝑥) < 𝐵}
& ⊢ (𝜑 → 𝐵 ∈ ℝ*) & ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) ⇒ ⊢ (𝜑 → 𝐴 ∈ 𝐽) |
|
Theorem | cncmpmax 44366* |
When the hypothesis for the extreme value theorem hold, then the sup of
the range of the function belongs to the range, it is real and it an
upper bound of the range. (Contributed by Glauco Siliprandi,
20-Apr-2017.)
|
⊢ 𝑇 = ∪
𝐽 & ⊢ 𝐾 = (topGen‘ran
(,))
& ⊢ (𝜑 → 𝐽 ∈ Comp) & ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) & ⊢ (𝜑 → 𝑇 ≠ ∅)
⇒ ⊢ (𝜑 → (sup(ran 𝐹, ℝ, < ) ∈ ran 𝐹 ∧ sup(ran 𝐹, ℝ, < ) ∈
ℝ ∧ ∀𝑡
∈ 𝑇 (𝐹‘𝑡) ≤ sup(ran 𝐹, ℝ, < ))) |
|
Theorem | rfcnpre3 44367* |
If F is a continuous function with respect to the standard topology,
then the preimage A of the values greater than or equal to a given real
B is a closed set. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
|
⊢
Ⅎ𝑡𝐹
& ⊢ 𝐾 = (topGen‘ran (,)) & ⊢ 𝑇 = ∪
𝐽 & ⊢ 𝐴 = {𝑡 ∈ 𝑇 ∣ 𝐵 ≤ (𝐹‘𝑡)}
& ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) ⇒ ⊢ (𝜑 → 𝐴 ∈ (Clsd‘𝐽)) |
|
Theorem | rfcnpre4 44368* |
If F is a continuous function with respect to the standard topology,
then the preimage A of the values less than or equal to a given real B
is a closed set. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
|
⊢
Ⅎ𝑡𝐹
& ⊢ 𝐾 = (topGen‘ran (,)) & ⊢ 𝑇 = ∪
𝐽 & ⊢ 𝐴 = {𝑡 ∈ 𝑇 ∣ (𝐹‘𝑡) ≤ 𝐵}
& ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) ⇒ ⊢ (𝜑 → 𝐴 ∈ (Clsd‘𝐽)) |
|
Theorem | sumpair 44369* |
Sum of two distinct complex values. The class expression for 𝐴 and
𝐵 normally contain free variable 𝑘 to
index it. (Contributed by
Glauco Siliprandi, 20-Apr-2017.)
|
⊢ (𝜑 → Ⅎ𝑘𝐷)
& ⊢ (𝜑 → Ⅎ𝑘𝐸)
& ⊢ (𝜑 → 𝐴 ∈ 𝑉)
& ⊢ (𝜑 → 𝐵 ∈ 𝑊)
& ⊢ (𝜑 → 𝐷 ∈ ℂ) & ⊢ (𝜑 → 𝐸 ∈ ℂ) & ⊢ (𝜑 → 𝐴 ≠ 𝐵)
& ⊢ ((𝜑 ∧ 𝑘 = 𝐴) → 𝐶 = 𝐷)
& ⊢ ((𝜑 ∧ 𝑘 = 𝐵) → 𝐶 = 𝐸) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ {𝐴, 𝐵}𝐶 = (𝐷 + 𝐸)) |
|
Theorem | rfcnnnub 44370* |
Given a real continuous function 𝐹 defined on a compact topological
space, there is always a positive integer that is a strict upper bound
of its range. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
|
⊢
Ⅎ𝑡𝐹
& ⊢ Ⅎ𝑡𝜑
& ⊢ 𝐾 = (topGen‘ran (,)) & ⊢ (𝜑 → 𝐽 ∈ Comp) & ⊢ 𝑇 = ∪
𝐽 & ⊢ (𝜑 → 𝑇 ≠ ∅) & ⊢ 𝐶 = (𝐽 Cn 𝐾)
& ⊢ (𝜑 → 𝐹 ∈ 𝐶) ⇒ ⊢ (𝜑 → ∃𝑛 ∈ ℕ ∀𝑡 ∈ 𝑇 (𝐹‘𝑡) < 𝑛) |
|
Theorem | refsum2cnlem1 44371* |
This is the core Lemma for refsum2cn 44372: the sum of two continuous real
functions (from a common topological space) is continuous. (Contributed
by Glauco Siliprandi, 20-Apr-2017.)
|
⊢
Ⅎ𝑥𝐴
& ⊢ Ⅎ𝑥𝐹
& ⊢ Ⅎ𝑥𝐺
& ⊢ Ⅎ𝑥𝜑
& ⊢ 𝐴 = (𝑘 ∈ {1, 2} ↦ if(𝑘 = 1, 𝐹, 𝐺)) & ⊢ 𝐾 = (topGen‘ran
(,))
& ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) & ⊢ (𝜑 → 𝐺 ∈ (𝐽 Cn 𝐾)) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ ((𝐹‘𝑥) + (𝐺‘𝑥))) ∈ (𝐽 Cn 𝐾)) |
|
Theorem | refsum2cn 44372* |
The sum of two continuus real functions (from a common topological
space) is continuous. (Contributed by Glauco Siliprandi,
20-Apr-2017.)
|
⊢
Ⅎ𝑥𝐹
& ⊢ Ⅎ𝑥𝐺
& ⊢ Ⅎ𝑥𝜑
& ⊢ 𝐾 = (topGen‘ran (,)) & ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) & ⊢ (𝜑 → 𝐺 ∈ (𝐽 Cn 𝐾)) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ ((𝐹‘𝑥) + (𝐺‘𝑥))) ∈ (𝐽 Cn 𝐾)) |
|
Theorem | adantlllr 44373 |
Deduction adding a conjunct to antecedent. (Contributed by Glauco
Siliprandi, 11-Dec-2019.)
|
⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏) ⇒ ⊢ (((((𝜑 ∧ 𝜂) ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏) |
|
Theorem | 3adantlr3 44374 |
Deduction adding a conjunct to antecedent. (Contributed by Glauco
Siliprandi, 11-Dec-2019.)
|
⊢ (((𝜑 ∧ (𝜓 ∧ 𝜒)) ∧ 𝜃) → 𝜏) ⇒ ⊢ (((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜂)) ∧ 𝜃) → 𝜏) |
|
Theorem | 3adantll2 44375 |
Deduction adding a conjunct to antecedent. (Contributed by Glauco
Siliprandi, 11-Dec-2019.)
|
⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏) ⇒ ⊢ ((((𝜑 ∧ 𝜂 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏) |
|
Theorem | 3adantll3 44376 |
Deduction adding a conjunct to antecedent. (Contributed by Glauco
Siliprandi, 11-Dec-2019.)
|
⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏) ⇒ ⊢ ((((𝜑 ∧ 𝜓 ∧ 𝜂) ∧ 𝜒) ∧ 𝜃) → 𝜏) |
|
Theorem | ssnel 44377 |
If not element of a set, then not element of a subset. (Contributed by
Glauco Siliprandi, 11-Dec-2019.)
|
⊢ ((𝐴 ⊆ 𝐵 ∧ ¬ 𝐶 ∈ 𝐵) → ¬ 𝐶 ∈ 𝐴) |
|
Theorem | sncldre 44378 |
A singleton is closed w.r.t. the standard topology on the reals.
(Contributed by Glauco Siliprandi, 11-Dec-2019.)
|
⊢ (𝐴 ∈ ℝ → {𝐴} ∈
(Clsd‘(topGen‘ran (,)))) |
|
Theorem | n0p 44379 |
A polynomial with a nonzero coefficient is not the zero polynomial.
(Contributed by Glauco Siliprandi, 5-Apr-2020.)
|
⊢ ((𝑃 ∈ (Poly‘ℤ)
∧ 𝑁 ∈
ℕ0 ∧ ((coeff‘𝑃)‘𝑁) ≠ 0) → 𝑃 ≠
0𝑝) |
|
Theorem | pm2.65ni 44380 |
Inference rule for proof by contradiction. (Contributed by Glauco
Siliprandi, 5-Apr-2020.)
|
⊢ (¬ 𝜑 → 𝜓)
& ⊢ (¬ 𝜑 → ¬ 𝜓) ⇒ ⊢ 𝜑 |
|
Theorem | pwssfi 44381 |
Every element of the power set of 𝐴 is finite if and only if 𝐴
is finite. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
|
⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ Fin ↔ 𝒫 𝐴 ⊆ Fin)) |
|
Theorem | iuneq2df 44382 |
Equality deduction for indexed union. (Contributed by Glauco
Siliprandi, 17-Aug-2020.)
|
⊢ Ⅎ𝑥𝜑
& ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐶) ⇒ ⊢ (𝜑 → ∪
𝑥 ∈ 𝐴 𝐵 = ∪
𝑥 ∈ 𝐴 𝐶) |
|
Theorem | nnfoctb 44383* |
There exists a mapping from ℕ onto any (nonempty)
countable set.
(Contributed by Glauco Siliprandi, 17-Aug-2020.)
|
⊢ ((𝐴 ≼ ω ∧ 𝐴 ≠ ∅) →
∃𝑓 𝑓:ℕ–onto→𝐴) |
|
Theorem | ssinss1d 44384 |
Intersection preserves subclass relationship. (Contributed by Glauco
Siliprandi, 17-Aug-2020.)
|
⊢ (𝜑 → 𝐴 ⊆ 𝐶) ⇒ ⊢ (𝜑 → (𝐴 ∩ 𝐵) ⊆ 𝐶) |
|
Theorem | elpwinss 44385 |
An element of the powerset of 𝐵 intersected with anything, is a
subset
of 𝐵. (Contributed by Glauco Siliprandi,
17-Aug-2020.)
|
⊢ (𝐴 ∈ (𝒫 𝐵 ∩ 𝐶) → 𝐴 ⊆ 𝐵) |
|
Theorem | unidmex 44386 |
If 𝐹 is a set, then ∪ dom 𝐹 is a set. (Contributed by Glauco
Siliprandi, 17-Aug-2020.)
|
⊢ (𝜑 → 𝐹 ∈ 𝑉)
& ⊢ 𝑋 = ∪ dom 𝐹 ⇒ ⊢ (𝜑 → 𝑋 ∈ V) |
|
Theorem | ndisj2 44387* |
A non-disjointness condition. (Contributed by Glauco Siliprandi,
17-Aug-2020.)
|
⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) ⇒ ⊢ (¬ Disj 𝑥 ∈ 𝐴 𝐵 ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 (𝑥 ≠ 𝑦 ∧ (𝐵 ∩ 𝐶) ≠ ∅)) |
|
Theorem | zenom 44388 |
The set of integer numbers is equinumerous to omega (the set of finite
ordinal numbers). (Contributed by Glauco Siliprandi, 17-Aug-2020.)
|
⊢ ℤ
≈ ω |
|
Theorem | uzwo4 44389* |
Well-ordering principle: any nonempty subset of an upper set of integers
has the least element. (Contributed by Glauco Siliprandi,
17-Aug-2020.)
|
⊢ Ⅎ𝑗𝜓
& ⊢ (𝑗 = 𝑘 → (𝜑 ↔ 𝜓)) ⇒ ⊢ ((𝑆 ⊆
(ℤ≥‘𝑀) ∧ ∃𝑗 ∈ 𝑆 𝜑) → ∃𝑗 ∈ 𝑆 (𝜑 ∧ ∀𝑘 ∈ 𝑆 (𝑘 < 𝑗 → ¬ 𝜓))) |
|
Theorem | unisn0 44390 |
The union of the singleton of the empty set is the empty set.
(Contributed by Glauco Siliprandi, 17-Aug-2020.)
|
⊢ ∪ {∅} = ∅ |
|
Theorem | ssin0 44391 |
If two classes are disjoint, two respective subclasses are disjoint.
(Contributed by Glauco Siliprandi, 17-Aug-2020.)
|
⊢ (((𝐴 ∩ 𝐵) = ∅ ∧ 𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐵) → (𝐶 ∩ 𝐷) = ∅) |
|
Theorem | inabs3 44392 |
Absorption law for intersection. (Contributed by Glauco Siliprandi,
17-Aug-2020.)
|
⊢ (𝐶 ⊆ 𝐵 → ((𝐴 ∩ 𝐵) ∩ 𝐶) = (𝐴 ∩ 𝐶)) |
|
Theorem | pwpwuni 44393 |
Relationship between power class and union. (Contributed by Glauco
Siliprandi, 17-Aug-2020.)
|
⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ 𝒫 𝒫 𝐵 ↔ ∪ 𝐴
∈ 𝒫 𝐵)) |
|
Theorem | disjiun2 44394* |
In a disjoint collection, an indexed union is disjoint from an
additional term. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
|
⊢ (𝜑 → Disj 𝑥 ∈ 𝐴 𝐵)
& ⊢ (𝜑 → 𝐶 ⊆ 𝐴)
& ⊢ (𝜑 → 𝐷 ∈ (𝐴 ∖ 𝐶)) & ⊢ (𝑥 = 𝐷 → 𝐵 = 𝐸) ⇒ ⊢ (𝜑 → (∪ 𝑥 ∈ 𝐶 𝐵 ∩ 𝐸) = ∅) |
|
Theorem | 0pwfi 44395 |
The empty set is in any power set, and it's finite. (Contributed by
Glauco Siliprandi, 17-Aug-2020.)
|
⊢ ∅ ∈
(𝒫 𝐴 ∩
Fin) |
|
Theorem | ssinss2d 44396 |
Intersection preserves subclass relationship. (Contributed by Glauco
Siliprandi, 17-Aug-2020.)
|
⊢ (𝜑 → 𝐵 ⊆ 𝐶) ⇒ ⊢ (𝜑 → (𝐴 ∩ 𝐵) ⊆ 𝐶) |
|
Theorem | zct 44397 |
The set of integer numbers is countable. (Contributed by Glauco
Siliprandi, 17-Aug-2020.)
|
⊢ ℤ
≼ ω |
|
Theorem | pwfin0 44398 |
A finite set always belongs to a power class. (Contributed by Glauco
Siliprandi, 17-Aug-2020.)
|
⊢ (𝒫
𝐴 ∩ Fin) ≠
∅ |
|
Theorem | uzct 44399 |
An upper integer set is countable. (Contributed by Glauco Siliprandi,
17-Aug-2020.)
|
⊢ 𝑍 =
(ℤ≥‘𝑁) ⇒ ⊢ 𝑍 ≼ ω |
|
Theorem | iunxsnf 44400* |
A singleton index picks out an instance of an indexed union's argument.
(Contributed by Glauco Siliprandi, 17-Aug-2020.)
|
⊢
Ⅎ𝑥𝐶
& ⊢ 𝐴 ∈ V & ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) ⇒ ⊢ ∪ 𝑥 ∈ {𝐴}𝐵 = 𝐶 |