![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ssinss2d | Structured version Visualization version GIF version |
Description: Intersection preserves subclass relationship. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
ssinss2d.1 | ⊢ (𝜑 → 𝐵 ⊆ 𝐶) |
Ref | Expression |
---|---|
ssinss2d | ⊢ (𝜑 → (𝐴 ∩ 𝐵) ⊆ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | incom 4197 | . 2 ⊢ (𝐴 ∩ 𝐵) = (𝐵 ∩ 𝐴) | |
2 | ssinss2d.1 | . . 3 ⊢ (𝜑 → 𝐵 ⊆ 𝐶) | |
3 | 2 | ssinss1d 44384 | . 2 ⊢ (𝜑 → (𝐵 ∩ 𝐴) ⊆ 𝐶) |
4 | 1, 3 | eqsstrid 4026 | 1 ⊢ (𝜑 → (𝐴 ∩ 𝐵) ⊆ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∩ cin 3943 ⊆ wss 3944 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2698 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1537 df-ex 1775 df-sb 2061 df-clab 2705 df-cleq 2719 df-clel 2805 df-rab 3428 df-v 3471 df-in 3951 df-ss 3961 |
This theorem is referenced by: caragenuncllem 45872 |
Copyright terms: Public domain | W3C validator |