![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fcnre | Structured version Visualization version GIF version |
Description: A function continuous with respect to the standard topology, is a real mapping. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
Ref | Expression |
---|---|
fcnre.1 | ⊢ 𝐾 = (topGen‘ran (,)) |
fcnre.3 | ⊢ 𝑇 = ∪ 𝐽 |
sfcnre.5 | ⊢ 𝐶 = (𝐽 Cn 𝐾) |
fcnre.6 | ⊢ (𝜑 → 𝐹 ∈ 𝐶) |
Ref | Expression |
---|---|
fcnre | ⊢ (𝜑 → 𝐹:𝑇⟶ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fcnre.6 | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ 𝐶) | |
2 | sfcnre.5 | . . . . 5 ⊢ 𝐶 = (𝐽 Cn 𝐾) | |
3 | 1, 2 | eleqtrdi 2839 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) |
4 | cntop1 23138 | . . . 4 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ Top) | |
5 | 3, 4 | syl 17 | . . 3 ⊢ (𝜑 → 𝐽 ∈ Top) |
6 | fcnre.3 | . . . 4 ⊢ 𝑇 = ∪ 𝐽 | |
7 | 6 | toptopon 22813 | . . 3 ⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑇)) |
8 | 5, 7 | sylib 217 | . 2 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑇)) |
9 | fcnre.1 | . . . 4 ⊢ 𝐾 = (topGen‘ran (,)) | |
10 | retopon 24674 | . . . 4 ⊢ (topGen‘ran (,)) ∈ (TopOn‘ℝ) | |
11 | 9, 10 | eqeltri 2825 | . . 3 ⊢ 𝐾 ∈ (TopOn‘ℝ) |
12 | 11 | a1i 11 | . 2 ⊢ (𝜑 → 𝐾 ∈ (TopOn‘ℝ)) |
13 | cnf2 23147 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑇) ∧ 𝐾 ∈ (TopOn‘ℝ) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹:𝑇⟶ℝ) | |
14 | 8, 12, 3, 13 | syl3anc 1369 | 1 ⊢ (𝜑 → 𝐹:𝑇⟶ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∈ wcel 2099 ∪ cuni 4904 ran crn 5674 ⟶wf 6539 ‘cfv 6543 (class class class)co 7415 ℝcr 11132 (,)cioo 13351 topGenctg 17413 Topctop 22789 TopOnctopon 22806 Cn ccn 23122 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5294 ax-nul 5301 ax-pow 5360 ax-pr 5424 ax-un 7735 ax-cnex 11189 ax-resscn 11190 ax-pre-lttri 11207 ax-pre-lttrn 11208 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-rab 3429 df-v 3472 df-sbc 3776 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4320 df-if 4526 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4905 df-iun 4994 df-br 5144 df-opab 5206 df-mpt 5227 df-id 5571 df-po 5585 df-so 5586 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7418 df-oprab 7419 df-mpo 7420 df-1st 7988 df-2nd 7989 df-er 8719 df-map 8841 df-en 8959 df-dom 8960 df-sdom 8961 df-pnf 11275 df-mnf 11276 df-xr 11277 df-ltxr 11278 df-le 11279 df-ioo 13355 df-topgen 17419 df-top 22790 df-topon 22807 df-bases 22843 df-cn 23125 |
This theorem is referenced by: rfcnpre2 44384 cncmpmax 44385 rfcnpre3 44386 rfcnpre4 44387 rfcnnnub 44389 stoweidlem28 45407 stoweidlem29 45408 stoweidlem36 45415 stoweidlem43 45422 stoweidlem44 45423 stoweidlem47 45426 stoweidlem52 45431 stoweidlem57 45436 stoweidlem59 45438 stoweidlem60 45439 stoweidlem61 45440 stoweidlem62 45441 stoweid 45442 |
Copyright terms: Public domain | W3C validator |