Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  refsum2cn Structured version   Visualization version   GIF version

Theorem refsum2cn 44372
Description: The sum of two continuus real functions (from a common topological space) is continuous. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
refsum2cn.1 𝑥𝐹
refsum2cn.2 𝑥𝐺
refsum2cn.3 𝑥𝜑
refsum2cn.4 𝐾 = (topGen‘ran (,))
refsum2cn.5 (𝜑𝐽 ∈ (TopOn‘𝑋))
refsum2cn.6 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
refsum2cn.7 (𝜑𝐺 ∈ (𝐽 Cn 𝐾))
Assertion
Ref Expression
refsum2cn (𝜑 → (𝑥𝑋 ↦ ((𝐹𝑥) + (𝐺𝑥))) ∈ (𝐽 Cn 𝐾))
Distinct variable groups:   𝑥,𝐽   𝑥,𝐾   𝑥,𝑋
Allowed substitution hints:   𝜑(𝑥)   𝐹(𝑥)   𝐺(𝑥)

Proof of Theorem refsum2cn
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 nfcv 2898 . . 3 𝑥{1, 2}
2 nfv 1910 . . . 4 𝑥 𝑘 = 1
3 refsum2cn.1 . . . 4 𝑥𝐹
4 refsum2cn.2 . . . 4 𝑥𝐺
52, 3, 4nfif 4554 . . 3 𝑥if(𝑘 = 1, 𝐹, 𝐺)
61, 5nfmpt 5249 . 2 𝑥(𝑘 ∈ {1, 2} ↦ if(𝑘 = 1, 𝐹, 𝐺))
7 refsum2cn.3 . 2 𝑥𝜑
8 eqid 2727 . 2 (𝑘 ∈ {1, 2} ↦ if(𝑘 = 1, 𝐹, 𝐺)) = (𝑘 ∈ {1, 2} ↦ if(𝑘 = 1, 𝐹, 𝐺))
9 refsum2cn.4 . 2 𝐾 = (topGen‘ran (,))
10 refsum2cn.5 . 2 (𝜑𝐽 ∈ (TopOn‘𝑋))
11 refsum2cn.6 . 2 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
12 refsum2cn.7 . 2 (𝜑𝐺 ∈ (𝐽 Cn 𝐾))
136, 3, 4, 7, 8, 9, 10, 11, 12refsum2cnlem1 44371 1 (𝜑 → (𝑥𝑋 ↦ ((𝐹𝑥) + (𝐺𝑥))) ∈ (𝐽 Cn 𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1534  wnf 1778  wcel 2099  wnfc 2878  ifcif 4524  {cpr 4626  cmpt 5225  ran crn 5673  cfv 6542  (class class class)co 7414  1c1 11133   + caddc 11135  2c2 12291  (,)cioo 13350  topGenctg 17412  TopOnctopon 22805   Cn ccn 23121
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-inf2 9658  ax-cnex 11188  ax-resscn 11189  ax-1cn 11190  ax-icn 11191  ax-addcl 11192  ax-addrcl 11193  ax-mulcl 11194  ax-mulrcl 11195  ax-mulcom 11196  ax-addass 11197  ax-mulass 11198  ax-distr 11199  ax-i2m1 11200  ax-1ne0 11201  ax-1rid 11202  ax-rnegex 11203  ax-rrecex 11204  ax-cnre 11205  ax-pre-lttri 11206  ax-pre-lttrn 11207  ax-pre-ltadd 11208  ax-pre-mulgt0 11209  ax-pre-sup 11210  ax-addf 11211
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-nel 3042  df-ral 3057  df-rex 3066  df-rmo 3371  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-tp 4629  df-op 4631  df-uni 4904  df-int 4945  df-iun 4993  df-iin 4994  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-se 5628  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-isom 6551  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-of 7679  df-om 7865  df-1st 7987  df-2nd 7988  df-supp 8160  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-er 8718  df-map 8840  df-ixp 8910  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-fsupp 9380  df-fi 9428  df-sup 9459  df-inf 9460  df-oi 9527  df-card 9956  df-pnf 11274  df-mnf 11275  df-xr 11276  df-ltxr 11277  df-le 11278  df-sub 11470  df-neg 11471  df-div 11896  df-nn 12237  df-2 12299  df-3 12300  df-4 12301  df-5 12302  df-6 12303  df-7 12304  df-8 12305  df-9 12306  df-n0 12497  df-z 12583  df-dec 12702  df-uz 12847  df-q 12957  df-rp 13001  df-xneg 13118  df-xadd 13119  df-xmul 13120  df-ioo 13354  df-icc 13357  df-fz 13511  df-fzo 13654  df-seq 13993  df-exp 14053  df-hash 14316  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-clim 15458  df-sum 15659  df-struct 17109  df-sets 17126  df-slot 17144  df-ndx 17156  df-base 17174  df-ress 17203  df-plusg 17239  df-mulr 17240  df-starv 17241  df-sca 17242  df-vsca 17243  df-ip 17244  df-tset 17245  df-ple 17246  df-ds 17248  df-unif 17249  df-hom 17250  df-cco 17251  df-rest 17397  df-topn 17398  df-0g 17416  df-gsum 17417  df-topgen 17418  df-pt 17419  df-prds 17422  df-xrs 17477  df-qtop 17482  df-imas 17483  df-xps 17485  df-mre 17559  df-mrc 17560  df-acs 17562  df-mgm 18593  df-sgrp 18672  df-mnd 18688  df-submnd 18734  df-mulg 19017  df-cntz 19261  df-cmn 19730  df-psmet 21264  df-xmet 21265  df-met 21266  df-bl 21267  df-mopn 21268  df-cnfld 21273  df-top 22789  df-topon 22806  df-topsp 22828  df-bases 22842  df-cn 23124  df-cnp 23125  df-tx 23459  df-hmeo 23652  df-xms 24219  df-ms 24220  df-tms 24221
This theorem is referenced by:  stoweidlem47  45407
  Copyright terms: Public domain W3C validator
OSZAR »