![]() |
Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > unisnALT | Structured version Visualization version GIF version |
Description: A set equals the union of its singleton. Theorem 8.2 of [Quine] p. 53. The User manually input on a mmj2 Proof Worksheet, without labels, all steps of unisnALT 44337 except 1, 11, 15, 21, and 30. With execution of the mmj2 unification command, mmj2 could find labels for all steps except for 2, 12, 16, 22, and 31 (and the then non-existing steps 1, 11, 15, 21, and 30). mmj2 could not find reference theorems for those five steps because the hypothesis field of each of these steps was empty and none of those steps unifies with a theorem in set.mm. Each of these five steps is a semantic variation of a theorem in set.mm and is 2-step provable. mmj2 does not have the ability to automatically generate the semantic variation in set.mm of a theorem in a mmj2 Proof Worksheet unless the theorem in the Proof Worksheet is labeled with a 1-hypothesis deduction whose hypothesis is a theorem in set.mm which unifies with the theorem in the Proof Worksheet. The stepprover.c program, which invokes mmj2, has this capability. stepprover.c automatically generated steps 1, 11, 15, 21, and 30, labeled all steps, and generated the RPN proof of unisnALT 44337. Roughly speaking, stepprover.c added to the Proof Worksheet a labeled duplicate step of each non-unifying theorem for each label in a text file, labels.txt, containing a list of labels provided by the User. Upon mmj2 unification, stepprover.c identified a label for each of the five theorems which 2-step proves it. For unisnALT 44337, the label list is a list of all 1-hypothesis propositional calculus deductions in set.mm. stepproverp.c is the same as stepprover.c except that it intermittently pauses during execution, allowing the User to observe the changes to a text file caused by the execution of particular statements of the program. (Contributed by Alan Sare, 19-Aug-2016.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
unisnALT.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
unisnALT | ⊢ ∪ {𝐴} = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluni 4906 | . . . . . 6 ⊢ (𝑥 ∈ ∪ {𝐴} ↔ ∃𝑞(𝑥 ∈ 𝑞 ∧ 𝑞 ∈ {𝐴})) | |
2 | 1 | biimpi 215 | . . . . 5 ⊢ (𝑥 ∈ ∪ {𝐴} → ∃𝑞(𝑥 ∈ 𝑞 ∧ 𝑞 ∈ {𝐴})) |
3 | id 22 | . . . . . . . . 9 ⊢ ((𝑥 ∈ 𝑞 ∧ 𝑞 ∈ {𝐴}) → (𝑥 ∈ 𝑞 ∧ 𝑞 ∈ {𝐴})) | |
4 | simpl 482 | . . . . . . . . 9 ⊢ ((𝑥 ∈ 𝑞 ∧ 𝑞 ∈ {𝐴}) → 𝑥 ∈ 𝑞) | |
5 | 3, 4 | syl 17 | . . . . . . . 8 ⊢ ((𝑥 ∈ 𝑞 ∧ 𝑞 ∈ {𝐴}) → 𝑥 ∈ 𝑞) |
6 | simpr 484 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ 𝑞 ∧ 𝑞 ∈ {𝐴}) → 𝑞 ∈ {𝐴}) | |
7 | 3, 6 | syl 17 | . . . . . . . . 9 ⊢ ((𝑥 ∈ 𝑞 ∧ 𝑞 ∈ {𝐴}) → 𝑞 ∈ {𝐴}) |
8 | elsni 4641 | . . . . . . . . 9 ⊢ (𝑞 ∈ {𝐴} → 𝑞 = 𝐴) | |
9 | 7, 8 | syl 17 | . . . . . . . 8 ⊢ ((𝑥 ∈ 𝑞 ∧ 𝑞 ∈ {𝐴}) → 𝑞 = 𝐴) |
10 | eleq2 2817 | . . . . . . . . 9 ⊢ (𝑞 = 𝐴 → (𝑥 ∈ 𝑞 ↔ 𝑥 ∈ 𝐴)) | |
11 | 10 | biimpac 478 | . . . . . . . 8 ⊢ ((𝑥 ∈ 𝑞 ∧ 𝑞 = 𝐴) → 𝑥 ∈ 𝐴) |
12 | 5, 9, 11 | syl2anc 583 | . . . . . . 7 ⊢ ((𝑥 ∈ 𝑞 ∧ 𝑞 ∈ {𝐴}) → 𝑥 ∈ 𝐴) |
13 | 12 | ax-gen 1790 | . . . . . 6 ⊢ ∀𝑞((𝑥 ∈ 𝑞 ∧ 𝑞 ∈ {𝐴}) → 𝑥 ∈ 𝐴) |
14 | 19.23v 1938 | . . . . . . 7 ⊢ (∀𝑞((𝑥 ∈ 𝑞 ∧ 𝑞 ∈ {𝐴}) → 𝑥 ∈ 𝐴) ↔ (∃𝑞(𝑥 ∈ 𝑞 ∧ 𝑞 ∈ {𝐴}) → 𝑥 ∈ 𝐴)) | |
15 | 14 | biimpi 215 | . . . . . 6 ⊢ (∀𝑞((𝑥 ∈ 𝑞 ∧ 𝑞 ∈ {𝐴}) → 𝑥 ∈ 𝐴) → (∃𝑞(𝑥 ∈ 𝑞 ∧ 𝑞 ∈ {𝐴}) → 𝑥 ∈ 𝐴)) |
16 | 13, 15 | ax-mp 5 | . . . . 5 ⊢ (∃𝑞(𝑥 ∈ 𝑞 ∧ 𝑞 ∈ {𝐴}) → 𝑥 ∈ 𝐴) |
17 | pm3.35 802 | . . . . 5 ⊢ ((∃𝑞(𝑥 ∈ 𝑞 ∧ 𝑞 ∈ {𝐴}) ∧ (∃𝑞(𝑥 ∈ 𝑞 ∧ 𝑞 ∈ {𝐴}) → 𝑥 ∈ 𝐴)) → 𝑥 ∈ 𝐴) | |
18 | 2, 16, 17 | sylancl 585 | . . . 4 ⊢ (𝑥 ∈ ∪ {𝐴} → 𝑥 ∈ 𝐴) |
19 | 18 | ax-gen 1790 | . . 3 ⊢ ∀𝑥(𝑥 ∈ ∪ {𝐴} → 𝑥 ∈ 𝐴) |
20 | dfss2 3964 | . . . 4 ⊢ (∪ {𝐴} ⊆ 𝐴 ↔ ∀𝑥(𝑥 ∈ ∪ {𝐴} → 𝑥 ∈ 𝐴)) | |
21 | 20 | biimpri 227 | . . 3 ⊢ (∀𝑥(𝑥 ∈ ∪ {𝐴} → 𝑥 ∈ 𝐴) → ∪ {𝐴} ⊆ 𝐴) |
22 | 19, 21 | ax-mp 5 | . 2 ⊢ ∪ {𝐴} ⊆ 𝐴 |
23 | id 22 | . . . . 5 ⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐴) | |
24 | unisnALT.1 | . . . . . 6 ⊢ 𝐴 ∈ V | |
25 | 24 | snid 4660 | . . . . 5 ⊢ 𝐴 ∈ {𝐴} |
26 | elunii 4908 | . . . . 5 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝐴 ∈ {𝐴}) → 𝑥 ∈ ∪ {𝐴}) | |
27 | 23, 25, 26 | sylancl 585 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ ∪ {𝐴}) |
28 | 27 | ax-gen 1790 | . . 3 ⊢ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ ∪ {𝐴}) |
29 | dfss2 3964 | . . . 4 ⊢ (𝐴 ⊆ ∪ {𝐴} ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ ∪ {𝐴})) | |
30 | 29 | biimpri 227 | . . 3 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ ∪ {𝐴}) → 𝐴 ⊆ ∪ {𝐴}) |
31 | 28, 30 | ax-mp 5 | . 2 ⊢ 𝐴 ⊆ ∪ {𝐴} |
32 | 22, 31 | eqssi 3994 | 1 ⊢ ∪ {𝐴} = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∀wal 1532 = wceq 1534 ∃wex 1774 ∈ wcel 2099 Vcvv 3469 ⊆ wss 3944 {csn 4624 ∪ cuni 4903 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2698 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1537 df-ex 1775 df-sb 2061 df-clab 2705 df-cleq 2719 df-clel 2805 df-v 3471 df-in 3951 df-ss 3961 df-sn 4625 df-uni 4904 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |