MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpd3an23 Structured version   Visualization version   GIF version

Theorem mpd3an23 1460
Description: An inference based on modus ponens. (Contributed by NM, 4-Dec-2006.)
Hypotheses
Ref Expression
mpd3an23.1 (𝜑𝜓)
mpd3an23.2 (𝜑𝜒)
mpd3an23.3 ((𝜑𝜓𝜒) → 𝜃)
Assertion
Ref Expression
mpd3an23 (𝜑𝜃)

Proof of Theorem mpd3an23
StepHypRef Expression
1 id 22 . 2 (𝜑𝜑)
2 mpd3an23.1 . 2 (𝜑𝜓)
3 mpd3an23.2 . 2 (𝜑𝜒)
4 mpd3an23.3 . 2 ((𝜑𝜓𝜒) → 𝜃)
51, 2, 3, 4syl3anc 1369 1 (𝜑𝜃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1085
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396  df-3an 1087
This theorem is referenced by:  rankcf  10801  bcpasc  14313  sqreulem  15339  qnumdencoprm  16717  qeqnumdivden  16718  xpsaddlem  17555  xpsvsca  17559  xpsle  17561  grpinvid  18956  qus0  19144  ghmid  19176  lsm01  19626  frgpadd  19718  abvneg  20714  lsmcv  21029  qusmul2  21171  discmp  23315  kgenhaus  23461  idnghm  24673  xmetdcn2  24766  pi1addval  24988  ipcau2  25175  gausslemma2dlem1a  27311  2lgs  27353  etasslt2  27760  uhgrsubgrself  29106  wlkl0  30190  mhmimasplusg  32771  lmhmimasvsca  32772  rlocaddval  32995  rlocmulval  32996  qusvsval  33077  qusmul  33127  carsgclctunlem2  33939  carsgclctun  33941  ballotlem1ri  34154  satefvfmla0  35028  satefvfmla1  35035  ftc1anclem5  37170  opoc1  38674  opoc0  38675  dochsat  40856  lcfrlem9  41023  pellfundex  42306  mnringmulrcld  43665  0ellimcdiv  45037  add2cncf  45290  stoweidlem21  45409  stoweidlem23  45411  stoweidlem32  45420  stoweidlem36  45424  stoweidlem40  45428  stoweidlem41  45429  natglobalincr  46263  mod42tp1mod8  46942  lincval0  47483
  Copyright terms: Public domain W3C validator
OSZAR »