![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mpd3an23 | Structured version Visualization version GIF version |
Description: An inference based on modus ponens. (Contributed by NM, 4-Dec-2006.) |
Ref | Expression |
---|---|
mpd3an23.1 | ⊢ (𝜑 → 𝜓) |
mpd3an23.2 | ⊢ (𝜑 → 𝜒) |
mpd3an23.3 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
mpd3an23 | ⊢ (𝜑 → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (𝜑 → 𝜑) | |
2 | mpd3an23.1 | . 2 ⊢ (𝜑 → 𝜓) | |
3 | mpd3an23.2 | . 2 ⊢ (𝜑 → 𝜒) | |
4 | mpd3an23.3 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
5 | 1, 2, 3, 4 | syl3anc 1369 | 1 ⊢ (𝜑 → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 |
This theorem is referenced by: rankcf 10801 bcpasc 14313 sqreulem 15339 qnumdencoprm 16717 qeqnumdivden 16718 xpsaddlem 17555 xpsvsca 17559 xpsle 17561 grpinvid 18956 qus0 19144 ghmid 19176 lsm01 19626 frgpadd 19718 abvneg 20714 lsmcv 21029 qusmul2 21171 discmp 23315 kgenhaus 23461 idnghm 24673 xmetdcn2 24766 pi1addval 24988 ipcau2 25175 gausslemma2dlem1a 27311 2lgs 27353 etasslt2 27760 uhgrsubgrself 29106 wlkl0 30190 mhmimasplusg 32771 lmhmimasvsca 32772 rlocaddval 32995 rlocmulval 32996 qusvsval 33077 qusmul 33127 carsgclctunlem2 33939 carsgclctun 33941 ballotlem1ri 34154 satefvfmla0 35028 satefvfmla1 35035 ftc1anclem5 37170 opoc1 38674 opoc0 38675 dochsat 40856 lcfrlem9 41023 pellfundex 42306 mnringmulrcld 43665 0ellimcdiv 45037 add2cncf 45290 stoweidlem21 45409 stoweidlem23 45411 stoweidlem32 45420 stoweidlem36 45424 stoweidlem40 45428 stoweidlem41 45429 natglobalincr 46263 mod42tp1mod8 46942 lincval0 47483 |
Copyright terms: Public domain | W3C validator |