![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mpd3an3 | Structured version Visualization version GIF version |
Description: An inference based on modus ponens. (Contributed by NM, 8-Nov-2007.) |
Ref | Expression |
---|---|
mpd3an3.2 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
mpd3an3.3 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
mpd3an3 | ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpd3an3.2 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
2 | mpd3an3.3 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
3 | 2 | 3expa 1116 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
4 | 1, 3 | mpdan 686 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 |
This theorem is referenced by: stoic2b 1770 elovmpo 7660 f1oeng 8985 php 9228 nnsdomg 9320 wdomimag 9604 gruuni 10817 genpv 11016 pncan3 11492 mulsubaddmulsub 11702 infssuzle 12939 fzrevral3 13614 flflp1 13798 subsq2 14200 brfi1ind 14486 opfi1ind 14489 ccatws1ls 14609 swrdrlen 14635 pfxpfxid 14685 pfxcctswrd 14686 2cshwid 14790 caubnd 15331 dvdsmul1 16248 dvdsmul2 16249 hashbcval 16964 setsvalg 17128 ressval 17205 restval 17401 mrelatglb0 18546 imasmnd2 18724 efmndov 18826 qusinv 19138 ghminv 19170 gsmsymgrfixlem1 19375 gsmsymgreqlem2 19379 gexod 19534 lsmvalx 19587 rngrz 20099 imasring 20259 irredneg 20362 01eq0ring 20460 ocvin 21599 frlmiscvec 21776 evlrhm 22035 gsumsmonply1 22219 mat1mhm 22379 marrepfval 22455 marrepval0 22456 marepvfval 22460 marepvval0 22461 1elcpmat 22610 m2cpminv0 22656 idpm2idmp 22696 chfacfscmulgsum 22755 chfacfpmmulgsum 22759 restin 23063 qtopval 23592 elqtop3 23600 elfm3 23847 flimval 23860 nmge0 24519 nmeq0 24520 nminv 24523 nmo0 24645 0nghm 24651 coemulhi 26181 isosctrlem2 26744 divsqrtsumlem 26905 2lgsoddprmlem4 27341 0uhgrrusgr 29385 frgruhgr0v 30067 nvge0 30476 nvnd 30491 dip0r 30520 dip0l 30521 nmoo0 30594 hi2eq 30908 wrdsplex 32655 resvval 33032 unitdivcld 33496 signspval 34178 satfv0 34962 ltflcei 37075 elghomlem1OLD 37352 rngorz 37390 rngonegmn1l 37408 rngonegmn1r 37409 igenval 37528 xrnidresex 37873 xrncnvepresex 37874 lfl0 38531 olj01 38691 olm11 38693 hl2at 38872 pmapeq0 39233 trlcl 39631 trlle 39651 tendoid 40240 tendo0plr 40259 tendoipl2 40265 erngmul 40273 erngmul-rN 40281 dvamulr 40479 dvavadd 40482 dvhmulr 40553 cdlemm10N 40585 repncan3 41932 pellfund14 42312 mendmulr 42606 onnog 42853 fmuldfeq 44965 stoweidlem19 45401 stoweidlem26 45408 addsubeq0 46670 prelspr 46820 lincval1 47481 |
Copyright terms: Public domain | W3C validator |