![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nmeq0 | Structured version Visualization version GIF version |
Description: The identity is the only element of the group with zero norm. First part of Problem 2 of [Kreyszig] p. 64. (Contributed by NM, 24-Nov-2006.) (Revised by Mario Carneiro, 4-Oct-2015.) |
Ref | Expression |
---|---|
nmf.x | ⊢ 𝑋 = (Base‘𝐺) |
nmf.n | ⊢ 𝑁 = (norm‘𝐺) |
nmeq0.z | ⊢ 0 = (0g‘𝐺) |
Ref | Expression |
---|---|
nmeq0 | ⊢ ((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋) → ((𝑁‘𝐴) = 0 ↔ 𝐴 = 0 )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nmf.n | . . . . 5 ⊢ 𝑁 = (norm‘𝐺) | |
2 | nmf.x | . . . . 5 ⊢ 𝑋 = (Base‘𝐺) | |
3 | nmeq0.z | . . . . 5 ⊢ 0 = (0g‘𝐺) | |
4 | eqid 2728 | . . . . 5 ⊢ (dist‘𝐺) = (dist‘𝐺) | |
5 | 1, 2, 3, 4 | nmval 24497 | . . . 4 ⊢ (𝐴 ∈ 𝑋 → (𝑁‘𝐴) = (𝐴(dist‘𝐺) 0 )) |
6 | 5 | adantl 481 | . . 3 ⊢ ((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋) → (𝑁‘𝐴) = (𝐴(dist‘𝐺) 0 )) |
7 | 6 | eqeq1d 2730 | . 2 ⊢ ((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋) → ((𝑁‘𝐴) = 0 ↔ (𝐴(dist‘𝐺) 0 ) = 0)) |
8 | ngpgrp 24507 | . . . . 5 ⊢ (𝐺 ∈ NrmGrp → 𝐺 ∈ Grp) | |
9 | 8 | adantr 480 | . . . 4 ⊢ ((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋) → 𝐺 ∈ Grp) |
10 | 2, 3 | grpidcl 18921 | . . . 4 ⊢ (𝐺 ∈ Grp → 0 ∈ 𝑋) |
11 | 9, 10 | syl 17 | . . 3 ⊢ ((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋) → 0 ∈ 𝑋) |
12 | ngpxms 24509 | . . . 4 ⊢ (𝐺 ∈ NrmGrp → 𝐺 ∈ ∞MetSp) | |
13 | 2, 4 | xmseq0 24369 | . . . 4 ⊢ ((𝐺 ∈ ∞MetSp ∧ 𝐴 ∈ 𝑋 ∧ 0 ∈ 𝑋) → ((𝐴(dist‘𝐺) 0 ) = 0 ↔ 𝐴 = 0 )) |
14 | 12, 13 | syl3an1 1161 | . . 3 ⊢ ((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 0 ∈ 𝑋) → ((𝐴(dist‘𝐺) 0 ) = 0 ↔ 𝐴 = 0 )) |
15 | 11, 14 | mpd3an3 1459 | . 2 ⊢ ((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋) → ((𝐴(dist‘𝐺) 0 ) = 0 ↔ 𝐴 = 0 )) |
16 | 7, 15 | bitrd 279 | 1 ⊢ ((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋) → ((𝑁‘𝐴) = 0 ↔ 𝐴 = 0 )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1534 ∈ wcel 2099 ‘cfv 6548 (class class class)co 7420 0cc0 11138 Basecbs 17179 distcds 17241 0gc0g 17420 Grpcgrp 18889 ∞MetSpcxms 24222 normcnm 24484 NrmGrpcngp 24485 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 ax-pre-sup 11216 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3373 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-riota 7376 df-ov 7423 df-oprab 7424 df-mpo 7425 df-om 7871 df-1st 7993 df-2nd 7994 df-frecs 8286 df-wrecs 8317 df-recs 8391 df-rdg 8430 df-er 8724 df-map 8846 df-en 8964 df-dom 8965 df-sdom 8966 df-sup 9465 df-inf 9466 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11476 df-neg 11477 df-div 11902 df-nn 12243 df-2 12305 df-n0 12503 df-z 12589 df-uz 12853 df-q 12963 df-rp 13007 df-xneg 13124 df-xadd 13125 df-xmul 13126 df-0g 17422 df-topgen 17424 df-mgm 18599 df-sgrp 18678 df-mnd 18694 df-grp 18892 df-psmet 21270 df-xmet 21271 df-bl 21273 df-mopn 21274 df-top 22795 df-topon 22812 df-topsp 22834 df-bases 22848 df-xms 24225 df-ms 24226 df-nm 24490 df-ngp 24491 |
This theorem is referenced by: nmne0 24527 ngpi 24536 nm0 24537 nmgt0 24538 tngngp 24570 tngngp3 24572 nlmmul0or 24599 nmoeq0 24652 ncvs1 25084 |
Copyright terms: Public domain | W3C validator |