![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > trlle | Structured version Visualization version GIF version |
Description: The trace of a lattice translation is less than the fiducial co-atom 𝑊. (Contributed by NM, 25-May-2012.) |
Ref | Expression |
---|---|
trlle.l | ⊢ ≤ = (le‘𝐾) |
trlle.h | ⊢ 𝐻 = (LHyp‘𝐾) |
trlle.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
trlle.r | ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
trlle | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → (𝑅‘𝐹) ≤ 𝑊) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | trlle.l | . . . . 5 ⊢ ≤ = (le‘𝐾) | |
2 | eqid 2728 | . . . . 5 ⊢ (oc‘𝐾) = (oc‘𝐾) | |
3 | eqid 2728 | . . . . 5 ⊢ (Atoms‘𝐾) = (Atoms‘𝐾) | |
4 | trlle.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
5 | 1, 2, 3, 4 | lhpocnel 39491 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (((oc‘𝐾)‘𝑊) ∈ (Atoms‘𝐾) ∧ ¬ ((oc‘𝐾)‘𝑊) ≤ 𝑊)) |
6 | 5 | adantr 480 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → (((oc‘𝐾)‘𝑊) ∈ (Atoms‘𝐾) ∧ ¬ ((oc‘𝐾)‘𝑊) ≤ 𝑊)) |
7 | eqid 2728 | . . . 4 ⊢ (join‘𝐾) = (join‘𝐾) | |
8 | eqid 2728 | . . . 4 ⊢ (meet‘𝐾) = (meet‘𝐾) | |
9 | trlle.t | . . . 4 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
10 | trlle.r | . . . 4 ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) | |
11 | 1, 7, 8, 3, 4, 9, 10 | trlval2 39636 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (((oc‘𝐾)‘𝑊) ∈ (Atoms‘𝐾) ∧ ¬ ((oc‘𝐾)‘𝑊) ≤ 𝑊)) → (𝑅‘𝐹) = ((((oc‘𝐾)‘𝑊)(join‘𝐾)(𝐹‘((oc‘𝐾)‘𝑊)))(meet‘𝐾)𝑊)) |
12 | 6, 11 | mpd3an3 1459 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → (𝑅‘𝐹) = ((((oc‘𝐾)‘𝑊)(join‘𝐾)(𝐹‘((oc‘𝐾)‘𝑊)))(meet‘𝐾)𝑊)) |
13 | hllat 38835 | . . . 4 ⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) | |
14 | 13 | ad2antrr 725 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → 𝐾 ∈ Lat) |
15 | hlop 38834 | . . . . . 6 ⊢ (𝐾 ∈ HL → 𝐾 ∈ OP) | |
16 | 15 | ad2antrr 725 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → 𝐾 ∈ OP) |
17 | eqid 2728 | . . . . . . 7 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
18 | 17, 4 | lhpbase 39471 | . . . . . 6 ⊢ (𝑊 ∈ 𝐻 → 𝑊 ∈ (Base‘𝐾)) |
19 | 18 | ad2antlr 726 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → 𝑊 ∈ (Base‘𝐾)) |
20 | 17, 2 | opoccl 38666 | . . . . 5 ⊢ ((𝐾 ∈ OP ∧ 𝑊 ∈ (Base‘𝐾)) → ((oc‘𝐾)‘𝑊) ∈ (Base‘𝐾)) |
21 | 16, 19, 20 | syl2anc 583 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → ((oc‘𝐾)‘𝑊) ∈ (Base‘𝐾)) |
22 | 17, 4, 9 | ltrncl 39598 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((oc‘𝐾)‘𝑊) ∈ (Base‘𝐾)) → (𝐹‘((oc‘𝐾)‘𝑊)) ∈ (Base‘𝐾)) |
23 | 21, 22 | mpd3an3 1459 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → (𝐹‘((oc‘𝐾)‘𝑊)) ∈ (Base‘𝐾)) |
24 | 17, 7 | latjcl 18430 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ ((oc‘𝐾)‘𝑊) ∈ (Base‘𝐾) ∧ (𝐹‘((oc‘𝐾)‘𝑊)) ∈ (Base‘𝐾)) → (((oc‘𝐾)‘𝑊)(join‘𝐾)(𝐹‘((oc‘𝐾)‘𝑊))) ∈ (Base‘𝐾)) |
25 | 14, 21, 23, 24 | syl3anc 1369 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → (((oc‘𝐾)‘𝑊)(join‘𝐾)(𝐹‘((oc‘𝐾)‘𝑊))) ∈ (Base‘𝐾)) |
26 | 17, 1, 8 | latmle2 18456 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ (((oc‘𝐾)‘𝑊)(join‘𝐾)(𝐹‘((oc‘𝐾)‘𝑊))) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((((oc‘𝐾)‘𝑊)(join‘𝐾)(𝐹‘((oc‘𝐾)‘𝑊)))(meet‘𝐾)𝑊) ≤ 𝑊) |
27 | 14, 25, 19, 26 | syl3anc 1369 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → ((((oc‘𝐾)‘𝑊)(join‘𝐾)(𝐹‘((oc‘𝐾)‘𝑊)))(meet‘𝐾)𝑊) ≤ 𝑊) |
28 | 12, 27 | eqbrtrd 5170 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → (𝑅‘𝐹) ≤ 𝑊) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1534 ∈ wcel 2099 class class class wbr 5148 ‘cfv 6548 (class class class)co 7420 Basecbs 17179 lecple 17239 occoc 17240 joincjn 18302 meetcmee 18303 Latclat 18422 OPcops 38644 Atomscatm 38735 HLchlt 38822 LHypclh 39457 LTrncltrn 39574 trLctrl 39631 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-rmo 3373 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-riota 7376 df-ov 7423 df-oprab 7424 df-mpo 7425 df-map 8846 df-proset 18286 df-poset 18304 df-plt 18321 df-lub 18337 df-glb 18338 df-join 18339 df-meet 18340 df-p0 18416 df-p1 18417 df-lat 18423 df-oposet 38648 df-ol 38650 df-oml 38651 df-covers 38738 df-ats 38739 df-atl 38770 df-cvlat 38794 df-hlat 38823 df-lhyp 39461 df-laut 39462 df-ldil 39577 df-ltrn 39578 df-trl 39632 |
This theorem is referenced by: trlne 39658 cdlemc5 39668 cdlemg6c 40093 cdlemg10c 40112 cdlemg10 40114 cdlemg17dALTN 40137 cdlemg27a 40165 cdlemg31b0N 40167 cdlemg31b0a 40168 cdlemg27b 40169 cdlemg31c 40172 cdlemg35 40186 cdlemh2 40289 cdlemh 40290 cdlemk3 40306 cdlemk9 40312 cdlemk9bN 40313 cdlemk10 40316 cdlemk12 40323 cdlemk14 40327 cdlemk12u 40345 cdlemkfid1N 40394 cdlemk47 40422 dia1N 40526 dia1dim 40534 dia2dimlem1 40537 dia2dimlem10 40546 dib1dim 40638 cdlemn2a 40669 dih1dimb 40713 dihopelvalcpre 40721 dihwN 40762 dihglblem5apreN 40764 dih1dimatlem 40802 |
Copyright terms: Public domain | W3C validator |