Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trlle Structured version   Visualization version   GIF version

Theorem trlle 39657
Description: The trace of a lattice translation is less than the fiducial co-atom 𝑊. (Contributed by NM, 25-May-2012.)
Hypotheses
Ref Expression
trlle.l = (le‘𝐾)
trlle.h 𝐻 = (LHyp‘𝐾)
trlle.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
trlle.r 𝑅 = ((trL‘𝐾)‘𝑊)
Assertion
Ref Expression
trlle (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝑅𝐹) 𝑊)

Proof of Theorem trlle
StepHypRef Expression
1 trlle.l . . . . 5 = (le‘𝐾)
2 eqid 2728 . . . . 5 (oc‘𝐾) = (oc‘𝐾)
3 eqid 2728 . . . . 5 (Atoms‘𝐾) = (Atoms‘𝐾)
4 trlle.h . . . . 5 𝐻 = (LHyp‘𝐾)
51, 2, 3, 4lhpocnel 39491 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (((oc‘𝐾)‘𝑊) ∈ (Atoms‘𝐾) ∧ ¬ ((oc‘𝐾)‘𝑊) 𝑊))
65adantr 480 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (((oc‘𝐾)‘𝑊) ∈ (Atoms‘𝐾) ∧ ¬ ((oc‘𝐾)‘𝑊) 𝑊))
7 eqid 2728 . . . 4 (join‘𝐾) = (join‘𝐾)
8 eqid 2728 . . . 4 (meet‘𝐾) = (meet‘𝐾)
9 trlle.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
10 trlle.r . . . 4 𝑅 = ((trL‘𝐾)‘𝑊)
111, 7, 8, 3, 4, 9, 10trlval2 39636 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (((oc‘𝐾)‘𝑊) ∈ (Atoms‘𝐾) ∧ ¬ ((oc‘𝐾)‘𝑊) 𝑊)) → (𝑅𝐹) = ((((oc‘𝐾)‘𝑊)(join‘𝐾)(𝐹‘((oc‘𝐾)‘𝑊)))(meet‘𝐾)𝑊))
126, 11mpd3an3 1459 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝑅𝐹) = ((((oc‘𝐾)‘𝑊)(join‘𝐾)(𝐹‘((oc‘𝐾)‘𝑊)))(meet‘𝐾)𝑊))
13 hllat 38835 . . . 4 (𝐾 ∈ HL → 𝐾 ∈ Lat)
1413ad2antrr 725 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → 𝐾 ∈ Lat)
15 hlop 38834 . . . . . 6 (𝐾 ∈ HL → 𝐾 ∈ OP)
1615ad2antrr 725 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → 𝐾 ∈ OP)
17 eqid 2728 . . . . . . 7 (Base‘𝐾) = (Base‘𝐾)
1817, 4lhpbase 39471 . . . . . 6 (𝑊𝐻𝑊 ∈ (Base‘𝐾))
1918ad2antlr 726 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → 𝑊 ∈ (Base‘𝐾))
2017, 2opoccl 38666 . . . . 5 ((𝐾 ∈ OP ∧ 𝑊 ∈ (Base‘𝐾)) → ((oc‘𝐾)‘𝑊) ∈ (Base‘𝐾))
2116, 19, 20syl2anc 583 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → ((oc‘𝐾)‘𝑊) ∈ (Base‘𝐾))
2217, 4, 9ltrncl 39598 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((oc‘𝐾)‘𝑊) ∈ (Base‘𝐾)) → (𝐹‘((oc‘𝐾)‘𝑊)) ∈ (Base‘𝐾))
2321, 22mpd3an3 1459 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝐹‘((oc‘𝐾)‘𝑊)) ∈ (Base‘𝐾))
2417, 7latjcl 18430 . . . 4 ((𝐾 ∈ Lat ∧ ((oc‘𝐾)‘𝑊) ∈ (Base‘𝐾) ∧ (𝐹‘((oc‘𝐾)‘𝑊)) ∈ (Base‘𝐾)) → (((oc‘𝐾)‘𝑊)(join‘𝐾)(𝐹‘((oc‘𝐾)‘𝑊))) ∈ (Base‘𝐾))
2514, 21, 23, 24syl3anc 1369 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (((oc‘𝐾)‘𝑊)(join‘𝐾)(𝐹‘((oc‘𝐾)‘𝑊))) ∈ (Base‘𝐾))
2617, 1, 8latmle2 18456 . . 3 ((𝐾 ∈ Lat ∧ (((oc‘𝐾)‘𝑊)(join‘𝐾)(𝐹‘((oc‘𝐾)‘𝑊))) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((((oc‘𝐾)‘𝑊)(join‘𝐾)(𝐹‘((oc‘𝐾)‘𝑊)))(meet‘𝐾)𝑊) 𝑊)
2714, 25, 19, 26syl3anc 1369 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → ((((oc‘𝐾)‘𝑊)(join‘𝐾)(𝐹‘((oc‘𝐾)‘𝑊)))(meet‘𝐾)𝑊) 𝑊)
2812, 27eqbrtrd 5170 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝑅𝐹) 𝑊)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1534  wcel 2099   class class class wbr 5148  cfv 6548  (class class class)co 7420  Basecbs 17179  lecple 17239  occoc 17240  joincjn 18302  meetcmee 18303  Latclat 18422  OPcops 38644  Atomscatm 38735  HLchlt 38822  LHypclh 39457  LTrncltrn 39574  trLctrl 39631
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-rmo 3373  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-riota 7376  df-ov 7423  df-oprab 7424  df-mpo 7425  df-map 8846  df-proset 18286  df-poset 18304  df-plt 18321  df-lub 18337  df-glb 18338  df-join 18339  df-meet 18340  df-p0 18416  df-p1 18417  df-lat 18423  df-oposet 38648  df-ol 38650  df-oml 38651  df-covers 38738  df-ats 38739  df-atl 38770  df-cvlat 38794  df-hlat 38823  df-lhyp 39461  df-laut 39462  df-ldil 39577  df-ltrn 39578  df-trl 39632
This theorem is referenced by:  trlne  39658  cdlemc5  39668  cdlemg6c  40093  cdlemg10c  40112  cdlemg10  40114  cdlemg17dALTN  40137  cdlemg27a  40165  cdlemg31b0N  40167  cdlemg31b0a  40168  cdlemg27b  40169  cdlemg31c  40172  cdlemg35  40186  cdlemh2  40289  cdlemh  40290  cdlemk3  40306  cdlemk9  40312  cdlemk9bN  40313  cdlemk10  40316  cdlemk12  40323  cdlemk14  40327  cdlemk12u  40345  cdlemkfid1N  40394  cdlemk47  40422  dia1N  40526  dia1dim  40534  dia2dimlem1  40537  dia2dimlem10  40546  dib1dim  40638  cdlemn2a  40669  dih1dimb  40713  dihopelvalcpre  40721  dihwN  40762  dihglblem5apreN  40764  dih1dimatlem  40802
  Copyright terms: Public domain W3C validator
OSZAR »