HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hi2eq Structured version   Visualization version   GIF version

Theorem hi2eq 30928
Description: Lemma used to prove equality of vectors. (Contributed by NM, 16-Nov-1999.) (New usage is discouraged.)
Assertion
Ref Expression
hi2eq ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐴 ·ih (𝐴 𝐵)) = (𝐵 ·ih (𝐴 𝐵)) ↔ 𝐴 = 𝐵))

Proof of Theorem hi2eq
StepHypRef Expression
1 hvsubcl 30840 . . . . 5 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 𝐵) ∈ ℋ)
2 his2sub 30915 . . . . 5 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ (𝐴 𝐵) ∈ ℋ) → ((𝐴 𝐵) ·ih (𝐴 𝐵)) = ((𝐴 ·ih (𝐴 𝐵)) − (𝐵 ·ih (𝐴 𝐵))))
31, 2mpd3an3 1459 . . . 4 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐴 𝐵) ·ih (𝐴 𝐵)) = ((𝐴 ·ih (𝐴 𝐵)) − (𝐵 ·ih (𝐴 𝐵))))
43eqeq1d 2730 . . 3 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (((𝐴 𝐵) ·ih (𝐴 𝐵)) = 0 ↔ ((𝐴 ·ih (𝐴 𝐵)) − (𝐵 ·ih (𝐴 𝐵))) = 0))
5 his6 30922 . . . 4 ((𝐴 𝐵) ∈ ℋ → (((𝐴 𝐵) ·ih (𝐴 𝐵)) = 0 ↔ (𝐴 𝐵) = 0))
61, 5syl 17 . . 3 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (((𝐴 𝐵) ·ih (𝐴 𝐵)) = 0 ↔ (𝐴 𝐵) = 0))
74, 6bitr3d 281 . 2 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (((𝐴 ·ih (𝐴 𝐵)) − (𝐵 ·ih (𝐴 𝐵))) = 0 ↔ (𝐴 𝐵) = 0))
8 hicl 30903 . . . 4 ((𝐴 ∈ ℋ ∧ (𝐴 𝐵) ∈ ℋ) → (𝐴 ·ih (𝐴 𝐵)) ∈ ℂ)
91, 8syldan 590 . . 3 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 ·ih (𝐴 𝐵)) ∈ ℂ)
10 simpr 484 . . . 4 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → 𝐵 ∈ ℋ)
11 hicl 30903 . . . 4 ((𝐵 ∈ ℋ ∧ (𝐴 𝐵) ∈ ℋ) → (𝐵 ·ih (𝐴 𝐵)) ∈ ℂ)
1210, 1, 11syl2anc 583 . . 3 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐵 ·ih (𝐴 𝐵)) ∈ ℂ)
139, 12subeq0ad 11612 . 2 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (((𝐴 ·ih (𝐴 𝐵)) − (𝐵 ·ih (𝐴 𝐵))) = 0 ↔ (𝐴 ·ih (𝐴 𝐵)) = (𝐵 ·ih (𝐴 𝐵))))
14 hvsubeq0 30891 . 2 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐴 𝐵) = 0𝐴 = 𝐵))
157, 13, 143bitr3d 309 1 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐴 ·ih (𝐴 𝐵)) = (𝐵 ·ih (𝐴 𝐵)) ↔ 𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1534  wcel 2099  (class class class)co 7420  cc 11137  0cc0 11139  cmin 11475  chba 30742   ·ih csp 30745  0c0v 30747   cmv 30748
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740  ax-resscn 11196  ax-1cn 11197  ax-icn 11198  ax-addcl 11199  ax-addrcl 11200  ax-mulcl 11201  ax-mulrcl 11202  ax-mulcom 11203  ax-addass 11204  ax-mulass 11205  ax-distr 11206  ax-i2m1 11207  ax-1ne0 11208  ax-1rid 11209  ax-rnegex 11210  ax-rrecex 11211  ax-cnre 11212  ax-pre-lttri 11213  ax-pre-lttrn 11214  ax-pre-ltadd 11215  ax-hfvadd 30823  ax-hvcom 30824  ax-hvass 30825  ax-hv0cl 30826  ax-hvaddid 30827  ax-hfvmul 30828  ax-hvmulid 30829  ax-hvdistr2 30832  ax-hvmul0 30833  ax-hfi 30902  ax-his2 30906  ax-his3 30907  ax-his4 30908
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5576  df-po 5590  df-so 5591  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-riota 7376  df-ov 7423  df-oprab 7424  df-mpo 7425  df-er 8725  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11281  df-mnf 11282  df-ltxr 11284  df-sub 11477  df-neg 11478  df-hvsub 30794
This theorem is referenced by:  hial2eq  30929
  Copyright terms: Public domain W3C validator
OSZAR »