![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mul32i | Structured version Visualization version GIF version |
Description: Commutative/associative law that swaps the last two factors in a triple product. (Contributed by NM, 11-May-1999.) |
Ref | Expression |
---|---|
mul.1 | ⊢ 𝐴 ∈ ℂ |
mul.2 | ⊢ 𝐵 ∈ ℂ |
mul.3 | ⊢ 𝐶 ∈ ℂ |
Ref | Expression |
---|---|
mul32i | ⊢ ((𝐴 · 𝐵) · 𝐶) = ((𝐴 · 𝐶) · 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mul.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
2 | mul.2 | . 2 ⊢ 𝐵 ∈ ℂ | |
3 | mul.3 | . 2 ⊢ 𝐶 ∈ ℂ | |
4 | mul32 11411 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵) · 𝐶) = ((𝐴 · 𝐶) · 𝐵)) | |
5 | 1, 2, 3, 4 | mp3an 1458 | 1 ⊢ ((𝐴 · 𝐵) · 𝐶) = ((𝐴 · 𝐶) · 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1534 ∈ wcel 2099 (class class class)co 7420 ℂcc 11137 · cmul 11144 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2699 ax-mulcom 11203 ax-mulass 11205 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-rab 3430 df-v 3473 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-br 5149 df-iota 6500 df-fv 6556 df-ov 7423 |
This theorem is referenced by: 8th4div3 12463 faclbnd4lem1 14285 bpoly4 16036 dec5nprm 17035 dec2nprm 17036 karatsuba 17053 quart1lem 26800 log2ublem2 26892 log2ub 26894 normlem3 30935 bcseqi 30943 dpmul100 32633 dpmul1000 32635 |
Copyright terms: Public domain | W3C validator |