![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nd4 | Structured version Visualization version GIF version |
Description: A lemma for proving conditionless ZFC axioms. Usage of this theorem is discouraged because it depends on ax-13 2365. (Contributed by NM, 2-Jan-2002.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nd4 | ⊢ (∀𝑥 𝑥 = 𝑦 → ¬ ∀𝑧 𝑦 ∈ 𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nd3 10610 | . 2 ⊢ (∀𝑦 𝑦 = 𝑥 → ¬ ∀𝑧 𝑦 ∈ 𝑥) | |
2 | 1 | aecoms 2421 | 1 ⊢ (∀𝑥 𝑥 = 𝑦 → ¬ ∀𝑧 𝑦 ∈ 𝑥) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∀wal 1531 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-12 2166 ax-13 2365 ax-ext 2696 ax-sep 5292 ax-pr 5421 ax-reg 9613 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-tru 1536 df-ex 1774 df-nf 1778 df-sb 2060 df-clab 2703 df-cleq 2717 df-clel 2802 df-ral 3052 df-rex 3061 df-v 3465 df-un 3944 df-sn 4623 df-pr 4625 |
This theorem is referenced by: axrepnd 10615 |
Copyright terms: Public domain | W3C validator |