![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > negeqi | Structured version Visualization version GIF version |
Description: Equality inference for negatives. (Contributed by NM, 14-Feb-1995.) |
Ref | Expression |
---|---|
negeqi.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
negeqi | ⊢ -𝐴 = -𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | negeqi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | negeq 11476 | . 2 ⊢ (𝐴 = 𝐵 → -𝐴 = -𝐵) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ -𝐴 = -𝐵 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1534 -cneg 11469 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2699 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-rab 3429 df-v 3472 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4319 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5143 df-iota 6494 df-fv 6550 df-ov 7417 df-neg 11471 |
This theorem is referenced by: negsubdii 11569 recgt0ii 12144 m1expcl2 14076 crreczi 14216 absi 15259 geo2sum2 15846 bpoly2 16027 bpoly3 16028 sinhval 16124 coshval 16125 cos2bnd 16158 divalglem2 16365 m1expaddsub 19446 cnmsgnsubg 21502 psgninv 21507 ncvspi 25077 cphipval2 25162 ditg0 25775 cbvditg 25776 ang180lem2 26735 ang180lem3 26736 ang180lem4 26737 1cubrlem 26766 dcubic2 26769 atandm2 26802 efiasin 26813 asinsinlem 26816 asinsin 26817 asin1 26819 reasinsin 26821 atancj 26835 atantayl2 26863 ppiub 27130 lgseisenlem1 27301 lgseisenlem2 27302 lgsquadlem1 27306 ostth3 27564 nvpi 30470 ipidsq 30513 ipasslem10 30642 normlem1 30913 polid2i 30960 lnophmlem2 31820 archirngz 32891 xrge0iif1 33533 ballotlem2 34102 itg2addnclem3 37140 dvasin 37171 areacirc 37180 lhe4.4ex1a 43760 itgsin0pilem1 45332 stoweidlem26 45408 dirkertrigeqlem3 45482 fourierdlem103 45591 sqwvfourb 45611 fourierswlem 45612 proththd 46948 |
Copyright terms: Public domain | W3C validator |